-weak Galerkin Finite Element Method for the Biharmonic Equation

A $$C^0$$C0-weak Galerkin (WG) method is introduced and analyzed in this article for solving the biharmonic equation in 2D and 3D. A discrete weak Laplacian is defined for $$C^0$$C0 functions, which is then used to design the weak Galerkin finite element scheme. This WG finite element formulation is symmetric, positive definite and parameter free. Optimal order error estimates are established for the weak Galerkin finite element solution in both a discrete $$H^2$$H2 norm and the standard $$H^1$$H1 and $$L^2$$L2 norms with appropriate regularity assumptions. Numerical results are presented to confirm the theory. As a technical tool, a refined Scott-Zhang interpolation operator is constructed to assist the corresponding error estimates. This refined interpolation preserves the volume mass of order $$(k+1-d)$$(k+1-d) and the surface mass of order $$(k+2-d)$$(k+2-d) for the $$P_{k+2}$$Pk+2 finite element functions in $$d$$d-dimensional space.

[1]  Igor Mozolevski,et al.  hp-Version a priori Error Analysis of Interior Penalty Discontinuous Galerkin Finite Element Approximations to the Biharmonic Equation , 2007, J. Sci. Comput..

[2]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[3]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[4]  Carlos E. Kenig,et al.  The Inhomogeneous Dirichlet Problem in Lipschitz Domains , 1995 .

[5]  Shangyou Zhang,et al.  The Lowest Order Differentiable Finite Element on Rectangular Grids , 2011, SIAM J. Numer. Anal..

[6]  B. M. Fraeijs de Veubeke,et al.  A conforming finite element for plate bending , 1968 .

[7]  Susanne C. Brenner,et al.  C0 Interior Penalty Methods for Fourth Order Elliptic Boundary Value Problems on Polygonal Domains , 2005, J. Sci. Comput..

[8]  J. Pipher,et al.  The Inhomogeneous Dirichlet Problem forΔ2in Lipschitz Domains , 1998 .

[9]  Junping Wang,et al.  A computational study of the weak Galerkin method for second-order elliptic equations , 2011, Numerical Algorithms.

[10]  Peter Monk,et al.  A mixed finite element method for the biharmonic equation , 1987 .

[11]  Junping Wang,et al.  Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes , 2013, 1303.0927.

[12]  J. Douglas,et al.  A family of $C^1$ finite elements with optimal approximation properties for various Galerkin methods for 2nd and 4th order problems , 1979 .

[13]  Thirupathi Gudi,et al.  Mixed Discontinuous Galerkin Finite Element Method for the Biharmonic Equation , 2008, J. Sci. Comput..

[14]  Zhong-Ci Shi,et al.  The Best L2 Norm Error Estimate of Lower Order Finite Element Methods for the Fourth Order Problem , 2012 .

[15]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[16]  T. Hughes,et al.  Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity , 2002 .

[17]  D. Arnold,et al.  Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .

[18]  C BrennerSusanne,et al.  C0interior penalty methods for fourth order elliptic boundary value problems on polygonal domains , 2005 .

[19]  Junping Wang,et al.  A weak Galerkin finite element method for second-order elliptic problems , 2011, J. Comput. Appl. Math..

[20]  Richard S. Falk Approximation of the Biharmonic Equation by a Mixed Finite Element Method , 1978 .

[21]  Miloš Zlámal,et al.  On the finite element method , 1968 .

[22]  A. Ženíšek Polynomial approximation on tetrahedrons in the finite element method , 1973 .

[23]  L. Morley The Triangular Equilibrium Element in the Solution of Plate Bending Problems , 1968 .

[24]  Junping Wang,et al.  A weak Galerkin mixed finite element method for second order elliptic problems , 2012, Math. Comput..

[25]  K. Bell A refined triangular plate bending finite element , 1969 .

[26]  Shangyou Zhang A family of 3D continuously differentiable finite elements on tetrahedral grids , 2009 .

[27]  Shangyou Zhang,et al.  On the Full C 1 -Q k Finite Element Spaces on Rectangles and Cuboids , 2010 .

[28]  M. Dauge Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions , 1988 .

[29]  D. W. Scharpf,et al.  The TUBA Family of Plate Elements for the Matrix Displacement Method , 1968, The Aeronautical Journal (1968).

[30]  Lin Mu,et al.  A Weak Galerkin Mixed Finite Element Method for Biharmonic Equations , 2012, 1210.3818.

[31]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[32]  P. Percell On Cubic and Quartic Clough–Tocher Finite Elements , 1976 .

[33]  Powell-Sabin,et al.  A C1-P2 FINITE ELEMENT WITHOUT NODAL BASIS , 2008 .

[34]  R. Rannacher,et al.  On the boundary value problem of the biharmonic operator on domains with angular corners , 1980 .