Sub-ppm YSZ-based mixed potential type acetone sensor utilizing columbite type composite oxide sensing electrode

[1]  G. Lu,et al.  High performance mixed potential type acetone sensor based on stabilized zirconia and NiNb2O6 sensing electrode , 2016 .

[2]  E. Filipek,et al.  A new compound in the Nb–V–Sb–O system and its physicochemical characteristic , 2016 .

[3]  Peng Sun,et al.  Template-free synthesis of hierarchical ZnFe2O4 yolk-shell microspheres for high-sensitivity acetone sensors. , 2016, Nanoscale.

[4]  Peng Sun,et al.  Mixed potential type acetone sensor using stabilized zirconia and M3V2O8 (M: Zn, Co and Ni) sensing electrode , 2015 .

[5]  K. Anandhan,et al.  Synthesis, FTIR, UV-Vis and Photoluminescence characterizations of triethanolamine passivated CdO nanostructures. , 2015, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[6]  Xin Zhang,et al.  Mixed-potential gas sensor with PtAu-8YSZ sensing electrode: Electric potential difference measurements at isothermal and thermo-cyclic operation , 2015 .

[7]  G. Lu,et al.  Double-Shell Architectures of ZnFe2O4 Nanosheets on ZnO Hollow Spheres for High-Performance Gas Sensors. , 2015, ACS applied materials & interfaces.

[8]  Peng Sun,et al.  Nanosheet-assembled ZnFe2O4 hollow microspheres for high-sensitive acetone sensor. , 2015, ACS applied materials & interfaces.

[9]  R. Yuvakkumar,et al.  Structural phase transitions in niobium oxide nanocrystals , 2015 .

[10]  N. Yamazoe,et al.  Porous ZnO/ZnCo2O4 hollow spheres: Synthesis, characterization, and applications in gas sensing , 2014 .

[11]  G. Lu,et al.  High Performance Mixed-Potential Type NOx Sensor Based On Stabilized Zirconia and Oxide Electrode , 2014 .

[12]  N. Yamazoe,et al.  Hierarchical α-Fe2O3/NiO composites with a hollow structure for a gas sensor. , 2014, ACS applied materials & interfaces.

[13]  Norio Miura,et al.  A review of mixed-potential type zirconia-based gas sensors , 2014, Ionics.

[14]  Frank Placido,et al.  Determination of optical and mechanical properties of Nb2O5 thin films for solar cells application , 2014 .

[15]  A. Mohamed,et al.  Enhanced sunlight photocatalytic performance over Nb2O5/ZnO nanorod composites and the mechanism study , 2014 .

[16]  N. Rajendran,et al.  Biomimetic novel nanoporous niobium oxide coating for orthopaedic applications , 2014 .

[17]  G. Lu,et al.  The effects of sintering temperature of MnCr2O4 nanocomposite on the NO2 sensing property for YSZ-based potentiometric sensor , 2013 .

[18]  J. Andrew Yeh,et al.  A Sub-ppm Acetone Gas Sensor for Diabetes Detection Using 10 nm Thick Ultrathin InN FETs , 2012, Sensors.

[19]  N. Miura,et al.  Construction of sensitive and selective zirconia-based CO sensors using ZnCr2O(4)-based sensing electrodes. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[20]  G. Lu,et al.  Mixed-potential-type zirconia-based NO2 sensor with high-performance three-phase boundary , 2011 .

[21]  Jinhuai Liu,et al.  Large-scale synthesis of hydrated tungsten oxide 3D architectures by a simple chemical solution route and their gas-sensing properties , 2011 .

[22]  Norio Miura,et al.  Stabilization of sensing performance for mixed-potential-type zirconia-based hydrocarbon sensor. , 2011, Talanta.

[23]  Sotiris E Pratsinis,et al.  Si:WO(3) Sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. , 2010, Analytical chemistry.

[24]  Masahiro Utiyama,et al.  Potentiometric YSZ-based sensor using NiO sensing electrode aiming at detection of volatile organic compounds (VOCs) in air environment , 2010 .

[25]  Haibin Yang,et al.  Growth and selective acetone detection based on ZnO nanorod arrays , 2009 .

[26]  Nicolae Barsan,et al.  Solid State Gas Sensor Research in Germany – a Status Report , 2009, Sensors.

[27]  Norio Miura,et al.  NO2 sensing performances of planar sensor using stabilized zirconia and thin-NiO sensing electrode , 2008 .

[28]  Z. Homonnay,et al.  The investigations of phases with general formula M2FeV3O11, where M=Mg, Co, Ni, Zn by IR and Mössbauer spectroscopy , 2007 .

[29]  Daisuke Terada,et al.  Mixed-potential-type zirconia-based NOx sensor using Rh-loaded NiO sensing electrode operating at high temperatures , 2006 .

[30]  J. Wolfsdorf,et al.  Diabetic Ketoacidosis in Infants, Children, and Adolescents , 2006, Diabetes Care.

[31]  H. Byun,et al.  Analysis of diabetic patient's breath with conducting polymer sensor array , 2005 .

[32]  X. Zhang,et al.  Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization. , 2004, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[33]  Norio Miura,et al.  Mixed potential type sensor using stabilized zirconia and ZnFe2O4 sensing electrode for NOx detection at high temperature , 2002 .

[34]  Norio Miura,et al.  Progress in mixed-potential type devices based on solid electrolyte for sensing redox gases , 2000 .

[35]  Norio Miura,et al.  HIGH-TEMPERATURE POTENTIOMETRIC/AMPEROMETRIC NOX SENSORS COMBINING STABILIZED ZIRCONIA WITH MIXED-METAL OXIDE ELECTRODE , 1998 .

[36]  N. Yamazoe,et al.  A high temperature amperometric NO sensor based on stabilized zirconia and CdCr2O4 electrode , 1998 .

[37]  Norio Miura,et al.  Highly selective CO sensor using stabilized zirconia and a couple of oxide electrodes , 1998 .

[38]  A. Pawlicka,et al.  Synthesis of multicolor Nb2O5 coatings for electrochromic devices , 1997 .

[39]  Norio Miura,et al.  High-temperature hydrogen sensor based on stabilized zirconia and a metal oxide electrode , 1996 .

[40]  Norio Miura,et al.  Stabilized zirconia-based sensor using oxide electrode for detection of NOx in high-temperature combustion-exhausts , 1996 .

[41]  Jianzhong Xiao,et al.  The effects of sintering temperature of (La0.8Sr0.2)2FeMnO6−δ on the NO2 sensing property for YSZ-based potentiometric sensor , 2015 .

[42]  Xiaogan Li,et al.  Hydrogen sensing of the mixed-potential-type MnWO4/YSZ/Pt sensor , 2015 .

[43]  P. Tabero Synthesis and properties of FeNb11O29 , 2005 .

[44]  R. Frech,et al.  Spectroscopic investigation of Li1+xV3O8 , 1998 .

[45]  R. Frech,et al.  Vibrational spectroscopic study of lithium vanadium pentoxides , 1997 .

[46]  Norio Miura,et al.  High-temperature sensors for NO and NO2 based onstabilized zirconiaand spinel-type oxide electrodes , 1997 .