Formation of Tidal Captures and Gravitational Wave Inspirals in Binary-single Interactions

We perform the first systematic study on how dynamical stellar tides and general relativistic (GR) effects affect the dynamics and outcomes of binary-single interactions. For this, we have constructed an N-body code that includes tides in the affine approximation, where stars are modeled as self-similar ellipsoidal polytropes, and GR corrections using the commonly-used post-Newtonian formalism. Using this numerical formalism, we are able resolve the leading effect from tides and GR across several orders of magnitude in both stellar radius and initial target binary separation. We find that the main effect from tides is the formation of two-body tidal captures that form during the chaotic and resonant evolution of the triple system. The two stars undergoing the capture spiral in and merge. The inclusion of tides can thus lead to an increase on the stellar coalescence rate. We also develop an analytical framework for calculating the cross section of tidal inspirals between any pair of objects with similar mass. From our analytical and numerical estimates we find that the rate of tidal inspirals relative to collisions increases as the initial semi-major axis of the target binary increases and the radius of the interacting tidal objects decreases. The largest effect is therefore found for triple systems hosting white dwarfs and neutron stars. In this case, we find the rate of highly eccentric white dwarf - neutron star mergers to likely be dominated by tidal inspirals. While tidal inspirals occur rarely, we note that they can give rise to a plethora of thermonuclear transients such as Ca-rich transients.

[1]  E. O. Ofek,et al.  A faint type of supernova from a white dwarf with a helium-rich companion , 2009, Nature.

[2]  F. Pretorius,et al.  DYNAMICAL CAPTURE BINARY NEUTRON STAR MERGERS , 2012, 1208.5279.

[3]  W. Hillebrandt,et al.  DETONATIONS IN SUB-CHANDRASEKHAR-MASS C+O WHITE DWARFS , 2010, 1003.2917.

[4]  S. Shapiro,et al.  Hydrodynamic instability and coalescence of close binary systems , 1993 .

[5]  A. Sandage The color-magnitude diagram for the globular cluster M 3. , 1953 .

[6]  Jeremiah P. Ostriker,et al.  Cross sections for tidal capture binary formation and stellar merger , 1986 .

[7]  R. O. Hansen POST-NEWTONIAN GRAVITATIONAL RADIATION FROM POINT MASSES IN A HYPERBOLIC KEPLER ORBIT. , 1972 .

[8]  Simon Portegies Zwart,et al.  Short gamma-ray bursts from binary neutron star mergers in globular clusters , 2005, astro-ph/0512654.

[9]  Douglas C. Heggie,et al.  Binary evolution in stellar dynamics , 1975 .

[10]  Helium Star/Black Hole Mergers: A New Gamma-Ray Burst Model , 1998, astro-ph/9804167.

[11]  K. Belczynski,et al.  Formation and evolution of compact binaries in globular clusters – II. Binaries with neutron stars , 2007, 0706.4096.

[12]  Jeremy Goodman,et al.  Nonlinear Damping of Oscillations in Tidal-Capture Binaries , 1996 .

[13]  S. Shapiro,et al.  Hydrodynamics of rotating stars and close binary interactions: Compressible ellipsoid models , 1994, astro-ph/9404031.

[14]  Daniel C. Fabrycky,et al.  ON THE TRIPLE ORIGIN OF BLUE STRAGGLERS , 2009, 0901.4328.

[15]  C. Kochanek The dynamical evolution of tidal capture binaries , 1992 .

[16]  Hydrodynamics of Coalescing Binary Neutron Stars: Ellipsoidal Treatment , 1994, astro-ph/9408054.

[17]  K. Janes The formation and evolution of star clusters , 1991 .

[18]  F. Timmes,et al.  On Type Ia Supernovae From The Collisions of Two White Dwarfs , 2009, 0907.3915.

[19]  S. McMillan,et al.  Formation and evolution of tidal binary systems , 1987 .

[20]  B. Carter,et al.  Mechanics of the affine star model , 1985 .

[21]  Steinn Sigurdsson,et al.  Dynamics and Interactions of Binaries and Neutron Stars in Globular Clusters , 1995 .

[22]  Vol Xiii,et al.  Astronomical Society of the Pacific , 1937, Nature.

[23]  A. Geller,et al.  Small-N collisional dynamics – II. Roaming the realm of not-so-small-N , 2015, 1503.07876.

[24]  P. Hut Binary-single star scattering. II: Analytic approximations for high velocity , 1983 .

[25]  Z. Etienne,et al.  Head-on collisions of binary white dwarf-neutron stars: Simulations in full general relativity , 2010, 1009.4932.

[26]  B. Stephens,et al.  ECCENTRIC BLACK-HOLE–NEUTRON-STAR MERGERS , 2011, 1105.3175.

[27]  Bence Kocsis,et al.  RESONANT POST-NEWTONIAN ECCENTRICITY EXCITATION IN HIERARCHICAL THREE-BODY SYSTEMS , 2012, 1206.4316.

[28]  W. H. Press,et al.  On formation of close binaries by two-body tidal capture , 1977 .

[29]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[30]  F. Rasio HYDRODYNAMIC STELLAR INTERACTIONS IN DENSE STAR CLUSTERS , 1993 .

[31]  G. Clark X-ray binaries in globular clusters , 1975 .

[32]  R. Taam,et al.  Formation and evolution of compact binaries in globular clusters - I. Binaries with white dwarfs , 2006, astro-ph/0604085.

[33]  C. Knigge,et al.  The origins of blue stragglers and binarity in globular clusters , 2012, 1210.0542.

[34]  Enrico Ramirez-Ruiz,et al.  THE FORMATION OF ECCENTRIC COMPACT BINARY INSPIRALS AND THE ROLE OF GRAVITATIONAL WAVE EMISSION IN BINARY–SINGLE STELLAR ENCOUNTERS , 2013, 1308.2964.

[35]  Luc Blanchet,et al.  Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries , 2002, Living reviews in relativity.

[36]  B. Metzger Nuclear-dominated accretion and subluminous supernovae from the merger of a white dwarf with a neutron star or black hole , 2011, 1105.6096.

[37]  C. Pethick,et al.  Tidal capture of stars by a massive black hole , 1992 .

[38]  J. Ostriker Physical Interactions between Stars , 1985 .

[39]  Equilibrium, stability, and orbital evolution of close binary systems , 1993, astro-ph/9307032.

[40]  N. Ivanova,et al.  EVOLUTION OF THE BINARY FRACTION IN DENSE STELLAR SYSTEMS , 2009, 0907.4196.

[41]  P. Hut,et al.  White dwarfs and neutron stars in globular cluster X-ray sources , 1983, Nature.

[42]  A. Vecchio,et al.  Eccentric Double White Dwarfs as LISA Sources in Globular Clusters , 2007, 0705.4287.

[43]  G. Ogilvie Tidal Dissipation in Stars and Giant Planets , 2014, 1406.2207.

[44]  E. S. Phinney,et al.  BINARIES IN GLOBULAR CLUSTERS , 1992, astro-ph/9710262.

[45]  J. Isern,et al.  Smoothed particle hydrodynamics simulations of white dwarf collisions and close encounters , 2010, 1004.4783.

[46]  A. Geller,et al.  Small‐N collisional dynamics: pushing into the realm of not‐so‐small N , 2012, 1207.2469.

[47]  Evolution of Close Neutron Star Binaries , 1996, gr-qc/9610032.

[48]  Steinn Sigurdsson,et al.  Binary-single star interactions in globular clusters , 1993 .

[49]  P. B. Ivanov,et al.  A New Model of a Tidally Disrupted Star , 2000 .

[50]  John N. Bahcall,et al.  Binary-single star scattering. I: Numerical experiments for equal masses , 1983 .

[51]  P. Hut,et al.  Globular cluster evolution with finite-size stars - Cross sections and reaction rates , 1985 .

[52]  V. M. Kaspi,et al.  Dynamical Formation of Close Binary Systems in Globular Clusters , 2003 .

[53]  William H. Lee,et al.  SHORT GAMMA-RAY BURSTS FROM DYNAMICALLY ASSEMBLED COMPACT BINARIES IN GLOBULAR CLUSTERS: PATHWAYS, RATES, HYDRODYNAMICS, AND COSMOLOGICAL SETTING , 2009, 0909.2884.

[54]  A. Kosovichev,et al.  Non-linear effects at tidal capture of stars by a massive black hole – I. Incompressible affine model , 1992 .

[55]  William H. Lee,et al.  The Progenitors of Short Gamma-Ray Bursts , 2007 .

[56]  M. Valtonen,et al.  The Three-Body Problem: Author index , 2006 .

[57]  Bernard F. Schutz,et al.  Living Reviews in Relativity: Making an Electronic Journal Live , 1997 .

[58]  D. Heggie,et al.  Binary-single-star scattering. IV - Analytic approximations and fitting formulae for cross sections and reaction rates , 1993 .

[59]  P. Hut,et al.  SUBMITTED TO APJL Preprint typeset using LATEX style emulateapj v. 6/22/04 DYNAMICAL FORMATION OF CLOSE BINARIES IN GLOBULAR CLUSTERS II: CATACLYSMIC VARIABLES , 2006 .

[60]  The Role of Chaos in the Circularization of Tidal Capture Binaries. II. Long-Time Evolution , 1993, astro-ph/9312054.

[61]  B. Carter,et al.  Dynamics of an Affine Star Model in a Black Hole Tidal Field , 1986 .

[62]  P. Hut Binary-single-star scattering. III: Numerical experiments for equal-mass hard binaries , 1993 .

[63]  J. Lombardi,et al.  On the onset of runaway stellar collisions in dense star clusters – II. Hydrodynamics of three-body interactions , 2009, 0904.0997.

[64]  S. Shapiro,et al.  Collisions and close encounters between massive main-sequence stars , 1993 .

[65]  D. Kasen,et al.  COLLISIONS OF WHITE DWARFS AS A NEW PROGENITOR CHANNEL FOR TYPE Ia SUPERNOVAE , 2009, 0907.3196.

[66]  J. Krolik Main-sequence binaries, contact binaries, and blue stragglers in globular clusters , 1983, Nature.

[67]  I. Novikov,et al.  The new model of a tidally disrupted star: further development and relativistic calculations , 2002, astro-ph/0205065.

[68]  S. McWilliams,et al.  Observing complete gravitational wave signals from dynamical capture binaries , 2012, 1212.0837.

[69]  F. Rasio,et al.  Stellar collisions during binary–binary and binary–single star interactions , 2004, astro-ph/0401004.

[70]  Gabriel Rockefeller,et al.  REMNANTS OF BINARY WHITE DWARF MERGERS , 2011, 1112.1420.

[71]  S. Shapiro,et al.  Merger of white dwarf-neutron star binaries: Prelude to hydrodynamic simulations in general relativity , 2009, 0910.5719.

[72]  Z. Etienne,et al.  Merger of binary white dwarf-neutron stars: Simulations in full general relativity , 2011, 1109.5177.

[73]  S. Chaichenets,et al.  FORMATION OF BLACK HOLE X-RAY BINARIES IN GLOBULAR CLUSTERS , 2010, 1001.1767.

[74]  J. Guillochon,et al.  CONDITIONS FOR SUCCESSFUL HELIUM DETONATIONS IN ASTROPHYSICAL ENVIRONMENTS , 2013, 1302.6235.

[75]  Three-body dynamics with gravitational wave emission , 2005, astro-ph/0509885.

[76]  J. Truran,et al.  HELIUM SHELL DETONATIONS ON LOW-MASS WHITE DWARFS AS A POSSIBLE EXPLANATION FOR SN 2005E , 2010, 1009.3829.

[77]  B. Stephens,et al.  Eccentric black hole-neutron star mergers: effects of black hole spin and equation of state , 2011, 1111.3055.

[78]  P. Diener,et al.  Non-linear effects at tidal capture of stars by a massive black hole – II. Compressible affine models and tidal interaction after capture , 1995 .

[79]  C. Knigge,et al.  An analytic model for blue straggler formation in globular clusters , 2011, 1105.5388.

[80]  Robert D. Mathieu,et al.  A mass transfer origin for blue stragglers in NGC 188 as revealed by half-solar-mass companions , 2011, Nature.

[81]  S. Aarseth,et al.  Tidal interactions in star cluster simulations , 2001 .

[82]  S. McMillan Triple interactions involving close binaries in globular clusters , 1986 .

[83]  Piet Hut,et al.  Long‐term evolution of isolated N‐body systems , 2002 .

[84]  The evolution of binary fractions in globular clusters , 2005, astro-ph/0501131.

[85]  S. Bernuzzi,et al.  Eccentric binary neutron star mergers , 2011, 1109.5128.

[86]  Martin J. Rees,et al.  Tidal capture formation of binary systems and X-ray sources in globular clusters. , 1975 .

[87]  S. Shapiro,et al.  Ellipsoidal figures of equilibrium: Compressible models , 1993 .

[88]  Merging White Dwarf/Black Hole Binaries and Gamma-Ray Bursts , 1998, astro-ph/9808094.

[89]  P. Freire,et al.  On the disruption of pulsar and x-ray binaries in globular clusters , 2013, 1310.4669.