Development of hollow fiber membranes with alumina and waste of quartzite

The development of ceramic membranes with different geometries and compositions extends the possibilities of industrial applications, inducing advantages in terms of increased permeability, membrane area by volume module and chemical, thermal and mechanical resistance. The use of low-cost raw materials is a trend that has grown in scientific research. The aim of this work is to prepare membranes with hollow fiber geometry from alumina and residue of quartzite, by the technique of immersion precipitation in distilled water from a mixture of ceramic mass with a solution of polyethersulfone and, synthesized in temperatures of 1100 ºC to 1500 °C. The hollow fiber membranes were characterized by chemical analysis, X-ray diffraction, particle size distribution, scanning electron microscopy, apparent porosity, flexural strength and permeated water flow by the membranes. The results indicated that the sintering temperature has direct influence on the formation of the mullite phase, and the properties of apparent porosity and permeate flow. The higher the sintering temperature (1400-1500 ° C) increase the formation of the mullite phase, the lower the porosity, as well as the lower the permeate water flow in the membranes. However, there was increase in flexural strength in the hollow fiber membranes with high temperature.

[1]  M. Othman,et al.  Pretreated aluminium dross waste as a source of inexpensive alumina-spinel composite ceramic hollow fibre membrane for pretreatment of oily saline produced water , 2019, Ceramics International.

[2]  Wenying Zhou,et al.  Preparation and characterization of mullite foam ceramics with porous struts from white clay and industrial alumina , 2018, Ceramics International.

[3]  A. Bouazizi,et al.  Manufacturing of tubular ceramic microfiltration membrane based on natural pozzolan for pretreatment of seawater desalination , 2017 .

[4]  Zhiwen Zhu,et al.  High-aluminum fly ash recycling for fabrication of cost-effective ceramic membrane supports , 2016 .

[5]  R. R. Menezes,et al.  Addition of quartzite residues on mortars: Analysis of the alkali aggregate reaction and the mechanical behavior , 2016 .

[6]  A. Guermat,et al.  The effects of mechanical activation on the sintering of mullite produced from kaolin and aluminum powder , 2016 .

[7]  Mingliang Chen,et al.  A low-cost alumina-mullite composite hollow fiber ceramic membrane fabricated via phase-inversion and sintering method , 2016 .

[8]  R. R. Menezes,et al.  Resíduo de quartzito - matéria-prima alternativa para uso em massas de cerâmica estrutural , 2016 .

[9]  Haiyan Du,et al.  Controllable synthesis of hierarchical porous mullite fiber network for gas filtration , 2016 .

[10]  G. Suarez,et al.  Mullite (3Al2O3·2SiO2) ceramics obtained by reaction sintering of rice husk ash and alumina, phase evolution, sintering and microstructure , 2016 .

[11]  Ye Fangbao,et al.  Low-cost porous mullite ceramic membrane supports fabricated from kyanite by casting and reaction sintering , 2016 .

[12]  X. Gu,et al.  Effects of sintering atmospheres on properties of stainless steel porous hollow fiber membranes , 2015 .

[13]  W. Xing,et al.  Design and preparation of high permeability porous mullite support for membranes by in-situ reaction , 2015 .

[14]  Jie Yang,et al.  Fabrication and properties of mullite-bonded porous SiC membrane supports using bauxite as aluminum source , 2015 .

[15]  H. L. Lira,et al.  Membrana cerâmica assimétrica à base de argila para aplicação em processos de microfiltração: influência do tempo de deposição , 2014 .

[16]  Kang Li,et al.  Micro-structured alumina hollow fibre membranes – Potential applications in wastewater treatment , 2014 .

[17]  Yingchao Dong,et al.  Environment-oriented low-cost porous mullite ceramic membrane supports fabricated from coal gangue and bauxite. , 2014, Journal of hazardous materials.

[18]  Huanting Wang,et al.  Nickel aluminate spinel reinforced ceramic hollow fibre membrane , 2014 .

[19]  Kepler Borges França,et al.  Preparação e caracterização de membranas cerâmicas tubulares de mulita , 2013 .

[20]  Francisco Wilson Hollanda Vidal,et al.  INCORPORAÇÃO DE RESÍDUO DE QUARTZITOS EM CERÂMICA VERMELHA , 2013 .

[21]  L. Winnubst,et al.  Towards a generic method for inorganic porous hollow fibers preparation with shrinkage-controlled small radial dimensions, applied to Al2O3, Ni, SiC, stainless steel, and YSZ , 2012 .

[22]  Huanting Wang,et al.  Hydrophobic porous alumina hollow fiber for water desalination via membrane distillation process , 2012 .

[23]  Chusheng Chen,et al.  Preparation of silicon nitride hollow fibre membrane for desalination , 2012 .

[24]  Steffen Heidenreich,et al.  Ceramic membranes: High filtration area packing densities improve membrane performance , 2011 .

[25]  G. Meng,et al.  Asymmetric porous cordierite hollow fiber membrane for microfiltration , 2009 .

[26]  Kang Li,et al.  A morphological study of ceramic hollow fibre membranes , 2009 .

[27]  R. Kiminami,et al.  Sintering of commercial mulite powder : Effect of MgO dopant , 2009 .

[28]  Zi-Feng Ma,et al.  A phase inversion/sintering process to fabricate nickel/yttria-stabilized zirconia hollow fibers as the anode support for micro-tubular solid oxide fuel cells , 2008 .

[29]  N. Xu,et al.  Direct preparation of macroporous mullite supports for membranes by in situ reaction sintering , 2008 .

[30]  R. R. Menezes,et al.  Obtenção de mulita porosa a partir da sílica da casca de arroz e do acetato de alumínio (Porous mullite obtained using silica from rice husk and aluminum acetate) , 2008 .

[31]  H. C. Ferreira,et al.  Utilização do resíduo do beneficiamento do caulim para a produção de corpos mulíticos , 2007 .

[32]  J. Holanda,et al.  Reaproveitamento de resíduo de rocha ornamental proveniente do Noroeste Fluminense em cerâmica vermelha (Utilization of ornamental rock waste from Northwest Fluminense in red ceramic) , 2005 .

[33]  Shaomin Liu,et al.  Preparation of porous aluminium oxide (Al2O3) hollow fibre membranes by a combined phase-inversion and sintering method , 2003 .