The Burkholderia mallei BmaR3-BmaI3 Quorum-Sensing System Produces and Responds to N-3-Hydroxy-Octanoyl Homoserine Lactone

ABSTRACT Burkholderia mallei has two acyl-homoserine lactone (acyl-HSL) signal generator-receptor pairs and two additional signal receptors, all of which contribute to virulence. We show that B. mallei produces N-3-hydroxy-octanoyl HSL (3OHC8-HSL) but a bmaI3 mutant does not. Recombinant Escherichia coli expressing BmaI3 produces hydroxylated acyl-HSLs, with 3OHC8-HSL being the most abundant compound. In recombinant E. coli, BmaR3 responds to 3OHC8-HSL but not to other acyl-HSLs. These data indicate that the signal for BmaR3-BmaI3 quorum sensing is 3OHC8-HSL.

[1]  A. Eberhard Inhibition and Activation of Bacterial Luciferase Synthesis , 1972, Journal of bacteriology.

[2]  E. Greenberg,et al.  Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. , 2001, Annual review of genetics.

[3]  Chao Xie,et al.  The BpsIR Quorum-Sensing System of Burkholderia pseudomallei , 2005, Journal of bacteriology.

[4]  Luther E. Lindler,et al.  Biological weapons defense: infectious disease and counterbioterrorism. , 2004 .

[5]  E. Greenberg,et al.  Octanoyl-Homoserine Lactone Is the Cognate Signal for Burkholderia mallei BmaR1-BmaI1 Quorum Sensing , 2007, Journal of bacteriology.

[6]  L. Pannell,et al.  Studies on Certain Biological Characteristics of Malleomyces mallei and Malleomyces pseudomallei , 1948, Journal of bacteriology.

[7]  T. Baldwin,et al.  Identification of the operator of the lux regulon from the Vibrio fischeri strain ATCC7744. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[8]  E. Greenberg,et al.  Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. , 1996, Annual review of microbiology.

[9]  N. Serkova,et al.  N-(3-Hydroxyhexanoyl)-l-Homoserine Lactone Is the Biologically Relevant Quormone That Regulates the phz Operon of Pseudomonas chlororaphis Strain 30-84 , 2007, Applied and Environmental Microbiology.

[10]  O. White,et al.  Structural flexibility in the Burkholderia mallei genome. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[11]  P. Seed,et al.  Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy , 1995, Journal of bacteriology.

[12]  D. Belin,et al.  Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter , 1995, Journal of bacteriology.

[13]  E. Greenberg,et al.  Acylated homoserine lactone detection in Pseudomonas aeruginosa biofilms by radiolabel assay. , 2001, Methods in enzymology.

[14]  W. Miller,et al.  Studies on Certain Biological Characteristics of Malleomyces mallei and Malleomyces pseudomallei: I. Morphology, Cultivation, Viability, and Isolation from Contaminated Specimens. , 1948, Journal of bacteriology.

[15]  Joon-Hee Lee,et al.  Activity of purified QscR, a Pseudomonas aeruginosa orphan quorum‐sensing transcription factor , 2006, Molecular microbiology.

[16]  S. Diggle,et al.  Quorum sensing regulates dpsA and the oxidative stress response in Burkholderia pseudomallei. , 2006, Microbiology.

[17]  K. Nealson,et al.  Cellular Control of the Synthesis and Activity of the Bacterial Luminescent System , 1970, Journal of bacteriology.

[18]  M. Engelmann,et al.  In vivo microdialysis for nonapeptides in rat brain--a practical guide. , 2001, Methods.

[19]  C. Fuqua,et al.  Broad-host-range expression vectors that carry the L-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. , 1999, Gene.

[20]  M. Silverman,et al.  Identification of genes and gene products necessary for bacterial bioluminescence. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[21]  S. Farrand,et al.  Activation of the phz Operon of Pseudomonas fluorescens 2-79 Requires the LuxR Homolog PhzR, N-(3-OH-Hexanoyl)-l-Homoserine Lactone Produced by the LuxI Homolog PhzI, and a cis-Acting phz Box , 2005, Journal of bacteriology.

[22]  E. Greenberg,et al.  Interchangeability and specificity of components from the quorum-sensing regulatory systems of Vibrio fischeri and Pseudomonas aeruginosa , 1994, Journal of bacteriology.

[23]  M. Churchill,et al.  Specificity of Acyl-Homoserine Lactone Synthases Examined by Mass Spectrometry , 2006, Journal of bacteriology.

[24]  P. Williams,et al.  Quorum sensing and the cell-cell communication dependent regulation of gene expression in pathogenic and non-pathogenic bacteria , 1998, Antonie van Leeuwenhoek.

[25]  A. Torres,et al.  Glanders: off to the races with Burkholderia mallei. , 2007, FEMS microbiology letters.

[26]  N. A. Whitehead,et al.  Quorum-sensing in Gram-negative bacteria. , 2001, FEMS microbiology reviews.

[27]  R. Ulrich,et al.  Quorum Sensing: a Transcriptional Regulatory System Involved in the Pathogenicity of Burkholderia mallei , 2004, Infection and Immunity.

[28]  E. Greenberg,et al.  Signalling: Listening in on bacteria: acyl-homoserine lactone signalling , 2002, Nature Reviews Molecular Cell Biology.

[29]  S. Lewenza,et al.  Regulation of Ornibactin Biosynthesis andN-Acyl-l-Homoserine Lactone Production by CepR in Burkholderia cepacia , 2001, Journal of bacteriology.

[30]  P. Dunlap,et al.  LuxR- and Acyl-Homoserine-Lactone-Controlled Non-luxGenes Define a Quorum-Sensing Regulon in Vibrio fischeri , 2000, Journal of bacteriology.

[31]  D. Ohman,et al.  Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family , 1995, Journal of bacteriology.

[32]  E. Greenberg,et al.  Transcriptome Analysis of the Vibrio fischeri LuxR-LuxI Regulon , 2007, Journal of bacteriology.