Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole

The star S2 orbiting the compact radio source Sgr A* is a precision probe of the gravitational field around the closest massive black hole (candidate). Over the last 2.7 decades we have monitored the star’s radial velocity and motion on the sky, mainly with the SINFONI and NACO adaptive optics (AO) instruments on the ESO VLT, and since 2017, with the four-telescope interferometric beam combiner instrument GRAVITY. In this Letter we report the first detection of the General Relativity (GR) Schwarzschild Precession (SP) in S2’s orbit. Owing to its highly elliptical orbit (e = 0.88), S2’s SP is mainly a kink between the pre-and post-pericentre directions of motion ≈±1 year around pericentre passage, relative to the corresponding Kepler orbit. The superb 2017−2019 astrometry of GRAVITY defines the pericentre passage and outgoing direction. The incoming direction is anchored by 118 NACO-AO measurements of S2’s position in the infrared reference frame, with an additional 75 direct measurements of the S2-Sgr A* separation during bright states (“flares”) of Sgr A*. Our 14-parameter model fits for the distance, central mass, the position and motion of the reference frame of the AO astrometry relative to the mass, the six parameters of the orbit, as well as a dimensionless parameter fSP for the SP (fSP = 0 for Newton and 1 for GR). From data up to the end of 2019 we robustly detect the SP of S2, δϕ ≈ 12′ per orbital period. From posterior fitting and MCMC Bayesian analysis with different weighting schemes and bootstrapping we find fSP = 1.10 ± 0.19. The S2 data are fully consistent with GR. Any extended mass inside S2’s orbit cannot exceed ≈0.1% of the central mass. Any compact third mass inside the central arcsecond must be less than about 1000 M⊙.

[1]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[2]  Rustam Gainutdinov PPN motion of the S-stars around Sgr A* , 2020, 2002.12598.

[3]  M. Reid,et al.  The Proper Motion of Sagittarius A*. III. The Case for a Supermassive Black Hole , 2020, The Astrophysical Journal.

[4]  E. Ramirez-Ruiz,et al.  A Hidden Friend for the Galactic Center Black Hole, Sgr A* , 2019, The Astrophysical Journal.

[5]  Jessica R. Lu,et al.  Relativistic redshift of the star S0-2 orbiting the Galactic Center supermassive black hole , 2019, Science.

[6]  S. Rabien,et al.  A geometric distance measurement to the Galactic center black hole with 0.3% uncertainty , 2019, Astronomy & Astrophysics.

[7]  S. T. Timmer,et al.  First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole , 2019, 1906.11238.

[8]  V. Cardoso,et al.  Testing the nature of dark compact objects: a status report , 2019, Living Reviews in Relativity.

[9]  G. Perrin,et al.  Single-mode interferometric field of view in partial turbulence correction , 2019, Astronomy & Astrophysics.

[10]  Jessica R. Lu,et al.  The Galactic Center: An Improved Astrometric Reference Frame for Stellar Orbits around the Supermassive Black Hole , 2019, The Astrophysical Journal.

[11]  H. Falcke,et al.  The Size, Shape, and Scattering of Sagittarius A* at 86 GHz: First VLBI with ALMA , 2019, The Astrophysical Journal.

[12]  S. Rabien,et al.  Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA* , 2018, Astronomy & Astrophysics.

[13]  S. Rabien,et al.  Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole , 2018, Astronomy & Astrophysics.

[14]  R. Sari,et al.  Unrecognized astrometric confusion in the Galactic Centre , 2018, 1802.08043.

[15]  T. Lacroix Dynamical constraints on a dark matter spike at the Galactic centre from stellar orbits , 2018, Astronomy & Astrophysics.

[16]  K. Bouman,et al.  Dynamical Imaging with Interferometry , 2017, 1711.01286.

[17]  Jessica R. Lu,et al.  Investigating the Binarity of S0-2: Implications for Its Origins and Robustness as a Probe of the Laws of Gravity around a Supermassive Black Hole , 2017, 1709.04890.

[18]  G. Perrin,et al.  General relativistic effects on the orbit of the S2 star with GRAVITY , 2017, 1709.04492.

[19]  R. Genzel,et al.  Twelve Years of Spectroscopic Monitoring in the Galactic Center: The Closest Look at S-stars near the Black Hole , 2017, 1708.06353.

[20]  A. Eckart,et al.  Investigating the Relativistic Motion of the Stars Near the Supermassive Black Hole in the Galactic Center , 2017, 1708.03507.

[21]  Jessica R. Lu,et al.  Testing General Relativity with Stellar Orbits around the Supermassive Black Hole in Our Galactic Center. , 2017, Physical review letters.

[22]  S. Rabien,et al.  First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer , 2017, 1705.02345.

[23]  T. Alexander Stellar Dynamics and Stellar Phenomena Near a Massive Black Hole , 2017, 1701.04762.

[24]  P. Amaro-Seoane,et al.  The distribution of stars around the Milky Way's black hole III: Comparison with simulations , 2017, 1701.03818.

[25]  P. Amaro-Seoane,et al.  The distribution of stars around the Milky Way's central black hole II: Diffuse light from sub-giants and dwarfs , 2017, 1701.03817.

[26]  Reinhard Genzel,et al.  An Update on Monitoring Stellar Orbits in the Galactic Center , 2016, 1611.09144.

[27]  L. Iorio,et al.  ON THE NEWTONIAN AND SPIN-INDUCED PERTURBATIONS FELT BY THE STARS ORBITING AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 2016, 1610.09781.

[28]  Jessica R. Lu,et al.  AN IMPROVED DISTANCE AND MASS ESTIMATE FOR SGR A* FROM A MULTISTAR ORBIT ANALYSIS , 2016, 1607.05726.

[29]  M. Kramer,et al.  Pulsars as probes of gravity and fundamental physics , 2016, 1606.03843.

[30]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[31]  Dimitrios Psaltis,et al.  A QUANTITATIVE TEST OF THE NO-HAIR THEOREM WITH Sgr A* USING STARS, PULSARS, AND THE EVENT HORIZON TELESCOPE , 2015, 1510.00394.

[32]  K. Menten,et al.  Pinpointing the near-infrared location of Sgr A* by correcting optical distortion in the NACO imager , 2015, 1509.01941.

[33]  P. Saha,et al.  Clocks around Sgr A , 2014, 1408.0283.

[34]  Jessica R. Lu,et al.  PROPERTIES OF THE REMNANT CLOCKWISE DISK OF YOUNG STARS IN THE GALACTIC CENTER , 2014, 1401.7354.

[35]  C. Will The Confrontation between General Relativity and Experiment , 1980, Living reviews in relativity.

[36]  H. Falcke,et al.  Toward the event horizon—the supermassive black hole in the Galactic Center , 2013, 1311.1841.

[37]  R. Genzel,et al.  THE NUCLEAR CLUSTER OF THE MILKY WAY: TOTAL MASS AND LUMINOSITY , 2013, Proceedings of the International Astronomical Union.

[38]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material , 2013, 1304.7762.

[39]  Chung-Pei Ma,et al.  REVISITING THE SCALING RELATIONS OF BLACK HOLE MASSES AND HOST GALAXY PROPERTIES , 2012, 1211.2816.

[40]  Jessica R. Lu,et al.  The Shortest-Known–Period Star Orbiting Our Galaxy’s Supermassive Black Hole , 2012, Science.

[41]  A. Ghez,et al.  Galactic center research: manifestations of the central black hole , 2012, 1207.6755.

[42]  Guy Perrin,et al.  GYOTO: a new general relativistic ray-tracing code , 2011, 1109.4769.

[43]  D. Merritt,et al.  TOWARD RELATIVISTIC ORBIT FITTING OF GALACTIC CENTER STARS AND PULSARS , 2010, 1007.0007.

[44]  D. Merritt,et al.  The Galactic Centre star S2 as a dynamical probe for intermediate-mass black holes , 2010, 1006.3563.

[45]  R. Genzel,et al.  The galactic center massive black hole and nuclear star cluster , 2010, 1006.0064.

[46]  C. Will,et al.  Testing properties of the Galactic center black hole using stellar orbits , 2009, 0911.4718.

[47]  R. Genzel,et al.  THE ORBIT OF THE STAR S2 AROUND SGR A* FROM VERY LARGE TELESCOPE AND KECK DATA , 2009, 0910.3069.

[48]  K. Menten,et al.  A TRIGONOMETRIC PARALLAX OF Sgr B2 , 2009, 0908.3637.

[49]  D. Merritt,et al.  SUBMITTED TO APJ Preprint typeset using LATEX style emulateapj v. 10/09/06 PERTURBATIONS OF INTERMEDIATE-MASS BLACK HOLES ON STELLAR ORBITS IN THE GALACTIC CENTER , 2022 .

[50]  A. Eckart,et al.  The nuclear star cluster of the Milky Way: proper motions and mass , 2009, 0902.3892.

[51]  D. Merritt,et al.  EXPLAINING THE ORBITS OF THE GALACTIC CENTER S-STARS , 2008, 0812.4517.

[52]  R. Genzel,et al.  MONITORING STELLAR ORBITS AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 2008, 0810.4674.

[53]  S. Trippe,et al.  EVIDENCE FOR WARPED DISKS OF YOUNG STARS IN THE GALACTIC CENTER , 2008, 0811.3903.

[54]  A. Niell,et al.  Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre , 2008, Nature.

[55]  Jessica R. Lu,et al.  Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits , 2008, 0808.2870.

[56]  Clifford M. Will,et al.  Testing the General Relativistic “No-Hair” Theorems Using the Galactic Center Black Hole Sagittarius A* , 2007, 0711.1677.

[57]  Berkeley,et al.  On the Nature of the Fast-Moving Star S2 in the Galactic Center , 2007, 0711.3344.

[58]  R. N. Manchester,et al.  Tests of General Relativity from Timing the Double Pulsar , 2006, Science.

[59]  T. Paumard,et al.  The Two Young Star Disks in the Central Parsec of the Galaxy: Properties, Dynamics, and Formation , 2006, astro-ph/0601268.

[60]  S. Zucker,et al.  Probing Post-Newtonian Physics near the Galactic Black Hole with Stellar Redshift Measurements , 2005, astro-ph/0509105.

[61]  T. Alexander,et al.  Stellar Processes Near the Massive Black Hole in the Galactic Center , 2005, astro-ph/0508106.

[62]  Norbert Hubin,et al.  SINFONI in the Galactic Center: Young Stars and Infrared Flares in the Central Light-Month , 2005 .

[63]  C.Dumas,et al.  SINFONI in the Galactic Center: young stars and IR flares in the central light month , 2005, astro-ph/0502129.

[64]  Diels Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften 20. Juli. Gesamtsitzung , 1916, Naturwissenschaften.

[65]  M. F. Radioastronomie,et al.  The Proper Motion of Sagittarius A*. II. The Mass of Sagittarius A* , 2004, astro-ph/0408107.

[66]  Heidelberg,et al.  Weighing the cusp at the Galactic Centre , 2004, astro-ph/0402338.

[67]  Measurements of Black Hole Spins and Tests of Strong‐Field General Relativity , 2004, astro-ph/0402213.

[68]  S. Tremaine,et al.  Ejection of Hypervelocity Stars by the (Binary) Black Hole in the Galactic Center , 2003, astro-ph/0309084.

[69]  Milos Milosavljevic,et al.  The Need for a Second Black Hole at the Galactic Center , 2003, astro-ph/0306074.

[70]  Norbert N. Hubin,et al.  SINFONI - Integral field spectroscopy at 50 milli-arcsecond resolution with the ESO VLT , 2003, SPIE Astronomical Telescopes + Instrumentation.

[71]  G. Neugebauer,et al.  The First Measurement of Spectral Lines in a Short-Period Star Bound to the Galaxy’s Central Black Hole: A Paradox of Youth , 2003 .

[72]  Norbert N. Hubin,et al.  Implementation of MACAO for SINFONI at the VLT, in NGS and LGS modes , 2003, SPIE Astronomical Telescopes + Instrumentation.

[73]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[74]  K. Menten,et al.  A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way , 2002, Nature.

[75]  Andreas Eckart,et al.  Periastron shifts of stellar orbits near the Galactic Center , 2001 .

[76]  Andrew C. Fabian,et al.  Broad Iron Lines in Active Galactic Nuclei , 2000 .

[77]  H. Falcke,et al.  Viewing the Shadow of the Black Hole at the Galactic Center , 1999, The Astrophysical journal.

[78]  Joseph Silk,et al.  Dark matter annihilation at the galactic center , 1999 .

[79]  Francois Rigaut,et al.  Design of the Nasmyth adaptive optics system (NAOS) of the VLT , 1998, Astronomical Telescopes and Instrumentation.

[80]  Peter Bizenberger,et al.  CONICA: the high-resolution near-infrared camera for the ESO VLT , 1998, Astronomical Telescopes and Instrumentation.

[81]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[82]  H. Kunieda,et al.  Gravitationally redshifted emission implying an accretion disk and massive black hole in the active galaxy MCG–6–30–15 , 1995, Nature.

[83]  High resolution K-band images of the galactic centre , 1993 .

[84]  L. Rezzolla,et al.  Classical and Quantum Gravity , 1996 .

[85]  Clifford M. Will,et al.  Conservation Laws and Preferred Frames in Relativistic Gravity. I. Preferred-Frame Theories and an Extended PPN Formalism , 1972 .

[86]  M. Rees,et al.  On Quasars, Dust and the Galactic Centre , 1971 .

[87]  A. Schild,et al.  QUASI-STELLAR SOURCES AND GRAVITATIONAL COLLAPSE, , 1965 .

[88]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[89]  M. Schmidt,et al.  3C 273 : A Star-Like Object with Large Red-Shift , 1963, Nature.

[90]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[91]  A. Einstein The Foundation of the General Theory of Relativity , 1916 .

[92]  A. Einstein,et al.  Die Grundlage der allgemeinen Relativitätstheorie , 1916 .

[93]  H. Plummer On the Problem of Distribution in Globular Star Clusters: (Plate 8.) , 1911 .