Light-front dynamic analysis of the longitudinal charge density using the exactly solvable scalar field theory in (1+1) dimensions

Yongwoo Choi,1 Ho-Meoyng Choi,2, ∗ Chueng-Ryong Ji,3, † and Yongseok Oh1, 4, ‡ 1Department of Physics, Kyungpook National University, Daegu 41566, Korea 2Department of Physics, Teachers College, Kyungpook National University, Daegu 41566, Korea 3Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 4Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 37673, Korea We investigate the electromagnetic form factor F(q2) of the meson by using exactly solvable φ 3 scalar field theory in (1+ 1) dimensions. As the transverse rotations are absent in (1+ 1) dimensions, the advantage of the light-front dynamics (LFD) with the light-front time x+ = x0 + x3 as the evolution parameter is maximized in contrast to the usual instant form dynamics (IFD) with the ordinary time x0 as the evolution parameter. In LFD, the individual x+-ordered amplitudes contributing to F(q2) are invariant under the boost, i.e., frameindependent, while the individual x0-ordered amplitudes in IFD are not invariant under the boost but dependent on the reference frame. The LFD allows to get the exact analytic result which covers not only the spacelike (q2 < 0) but also timelike region (q2 > 0). Using the analytic results, we verify that the real and imaginary parts of the form factor satisfy the dispersion relations in the entire q2 space. Comparing with the results in (3+ 1) dimensions, we discuss the transverse momentum effects on F(q2) . We also discuss the longitudinal charge density in terms of the boost invariant variable z̃ = p+x− in LFD.

[1]  S. Brodsky,et al.  Frame-independent spatial coordinate z̃ : Implications for light-front wave functions, deep inelastic scattering, light-front holography, and lattice QCD calculations , 2019, Physical Review C.

[2]  G. Mercado confinement , 2019, The Filmmaker's Eye: The Language of the Lens.

[3]  G. A. Miller,et al.  Defining the proton radius: A unified treatment , 2018, Physical Review C.

[4]  Yu Jia,et al.  Partonic quasidistributions in two-dimensional QCD , 2018, Physical Review D.

[5]  Yu Jia,et al.  Solving the Bars-Green equation for moving mesons in two-dimensional QCD , 2017, 1708.09379.

[6]  T. Horn,et al.  Pion transverse charge density and the edge of hadrons , 2014, 1404.1539.

[7]  C. Weiss,et al.  Pion transverse charge density from timelike form factor data , 2010, 1011.1472.

[8]  J. Arrington,et al.  Realistic Transverse Images of the Proton Charge and Magnetic Densities , 2010, 1010.3629.

[9]  C. Weiss,et al.  Quantifying the nucleon’s pion cloud with transverse charge densities , 2010, 1004.3535.

[10]  G. A. Miller,et al.  Electromagnetic Form Factors and Charge Densities From Hadrons to Nuclei , 2009, 0908.1535.

[11]  G. A. Miller,et al.  Singular Charge Density at the Center of the Pion , 2009, 0901.1117.

[12]  M. Vanderhaeghen,et al.  Empirical transverse charge densities in the nucleon and the nucleon-to-delta transition. , 2007, Physical review letters.

[13]  G. A. Miller,et al.  Charge densities of the neutron and proton. , 2007, Physical review letters.

[14]  M. Burkardt IMPACT PARAMETER SPACE INTERPRETATION FOR GENERALIZED PARTON DISTRIBUTIONS , 2002, hep-ph/0207047.

[15]  M. Diehl Generalized parton distributions in impact parameter space , 2002, hep-ph/0205208.

[16]  B. Bakker,et al.  Regularizing the divergent structure of light-front currents , 2000, hep-ph/0008147.

[17]  H. Choi,et al.  Exploring the time-like region for the elastic form factor in the light-front quantization , 1999, hep-ph/9906225.

[18]  B. Bakker,et al.  Disentangling intertwined embedded states and spin effects in light-front quantization , 2000, hep-th/0003105.

[19]  T. Frederico,et al.  Pairs in the light-front and covariance , 1998, hep-ph/9802325.

[20]  Sawicki Light-front limit in a rest frame. , 1991, Physical review. D, Particles and fields.

[21]  Glazek,et al.  Relativistic bound-state form factors in a solvable (1+1)-dimensional model including pair creation. , 1990, Physical review. D, Particles and fields.

[22]  Sawicki,et al.  Solvable light-front model of a relativistic bound state in 1+1 dimensions. , 1988, Physical review. D, Particles and fields.

[23]  Ji,et al.  Bound-state problem in quantum field theory: Linear and nonlinear dynamics. , 1987, Physical review. D, Particles and fields.

[24]  Ming Li,et al.  QCD2 in the axial gauge , 1987 .

[25]  Sawicki Eigensolutions of the light-cone equation for a scalar field model. , 1986, Physical review. D, Particles and fields.

[26]  C. Papanicolas,et al.  Electron scattering and nuclear structure , 1987 .

[27]  Sawicki Solution of the light-cone equation for the relativistic bound state. , 1985, Physical review. D, Particles and fields.

[28]  Ji,et al.  Evolution equation and relativistic bound-state wave functions for scalar-field models in four and six dimensions. , 1985, Physical review. D, Particles and fields.

[29]  L. Müller Relativistic two-nucleon calculations on the light front , 1983 .

[30]  V. Karmanov Relativistic deuteron wave function on the light front , 1981 .

[31]  V. A. Karmanov,et al.  Light-front wave function of a relativistic composite system in an explicitly solvable model , 1980 .

[32]  I. Bars,et al.  Poincare- and gauge-invariant two-dimensional quantum chromodynamics , 1978 .

[33]  D. Soper The Parton Model and the Bethe-Salpeter Wave Function , 1977 .

[34]  M. Einhorn Confinement, form factors, and deep-inelastic scattering in two-dimensional quantum chromodynamics , 1976 .

[35]  G. Hooft A two-dimensional model for mesons , 1974 .

[36]  J. Townsend,et al.  Wick equation, the infinite-momentum frame, and perturbation theory , 1973 .

[37]  S. Brodsky,et al.  Quantum electrodynamics and renormalization theory in the infinite momentum frame , 1972 .

[38]  Shang‐keng Ma,et al.  FEYNMAN RULES AND QUANTUM ELECTRODYNAMICS AT INFINITE MOMENTUM. , 1969 .

[39]  S. Weinberg Dynamics at Infinite Momentum , 1966 .

[40]  R. Blin-stoyle Elementary Particle Physics , 1965, Nature.

[41]  K. Haller Quantum Electrodynamics , 1979, Nature.