Multiscale Nano-Integration in the Scarf-Bonded Patches for Enhancing the Performance of the Repaired Secondary Load-Bearing Aircraft Composite Structures

[1]  M. C. Rezende,et al.  Fractographic analysis of scarf repaired carbon/epoxy laminates submitted to tensile strength , 2021 .

[2]  G. Galanopoulos,et al.  Evaluating experimentally and numerically different scarf-repair methodologies of composite structures , 2020 .

[3]  M. Yildiz,et al.  Three‐Dimensional Graphene‐Based Structures: Production Methods, Properties, and Applications , 2019, Handbook of Graphene.

[4]  J. Kweon,et al.  Cohesive zone method for failure analysis of scarf patch-repaired composite laminates under bending load , 2019, Composite Structures.

[5]  S. Varghese,et al.  Mode I and Mode II interlaminar fracture behavior of E‐glass fiber reinforced epoxy composites modified with reduced exfoliated graphite oxide , 2018 .

[6]  Ignaas Verpoest,et al.  Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance , 2018, Journal of Composite Materials.

[7]  Naresh Chandra Murmu,et al.  Effects of hydrazine reduced graphene oxide on the inter-laminar fracture toughness of woven carbon fiber/epoxy composite , 2018, Composites Part B: Engineering.

[8]  P. Poulin,et al.  Fracture related mechanical properties of low and high graphene reinforcement of epoxy nanocomposites , 2017 .

[9]  Hasan Junaid Hasham,et al.  Failure mechanisms of scarf-repaired composite laminates under tensile load , 2016 .

[10]  P. Hubert,et al.  Processing of co-bonded scarf repairs: Void reduction strategies and influence on strength recovery , 2016 .

[11]  M. Quaresimin,et al.  Toughening mechanisms in polymer nanocomposites: From experiments to modelling , 2016 .

[12]  M. Yildiz,et al.  Nano-engineered design and manufacturing of high-performance epoxy matrix composites with carbon fiber/selectively integrated graphene as multi-scale reinforcements , 2016 .

[13]  M. Yildiz,et al.  Design and fabrication of hollow and filled graphene-based polymeric spheres via core–shell electrospraying , 2015 .

[14]  F. Taheri,et al.  Effect of processing parameters on the structure and multi-functional performance of epoxy/GNP-nanocomposites , 2014, Journal of Materials Science.

[15]  George Marsh,et al.  Composites flying high , 2014 .

[16]  S. Chandrasekaran,et al.  Preparation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite: Mechanical, electrical and thermal properties , 2013 .

[17]  Chun H. Wang,et al.  Effects of bondline flaws on the damage tolerance of composite scarf joints , 2013 .

[18]  Jie Jin,et al.  An investigation of the mechanism of graphene toughening epoxy , 2013 .

[19]  D. Yan,et al.  The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites , 2013 .

[20]  Yasir Baig,et al.  Study of tensile failure mechanisms in scarf repaired CFRP laminates , 2013 .

[21]  F. Nüesch,et al.  Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites , 2012 .

[22]  M.F.S.F. de Moura,et al.  Numerical evaluation of three-dimensional scarf repairs in carbon-epoxy structures , 2010 .

[23]  Jang‐Kyo Kim,et al.  Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites , 2010 .

[24]  Robert Lipton,et al.  Optimization of a composite scarf repair patch under tensile loading , 2009 .

[25]  Chun H. Wang,et al.  Optimum shapes of scarf repairs , 2009 .

[26]  Erdogan Madenci,et al.  Three-dimensional nonlinear analyses of scarf repair in composite laminates and sandwich panels , 2008 .

[27]  Chun H. Wang,et al.  On the design methodology of scarf repairs to composite laminates , 2008 .

[28]  Bodo Fiedler,et al.  FUNDAMENTAL ASPECTS OF NANO-REINFORCED COMPOSITES , 2006 .

[29]  Andrew J. Gunnion,et al.  Parametric study of scarf joints in composite structures , 2006 .

[30]  S. Jayasinghe Self-assembled nanostructures via electrospraying , 2006 .

[31]  K. Schulte,et al.  Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content , 2004 .

[32]  Elizabeth C. Dickey,et al.  Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites , 2000 .

[33]  Constantinos Soutis,et al.  Strength prediction of patch-repaired CFRP laminates loaded in compression , 2000 .

[34]  A. Baker Bonded composite repair of fatigue-cracked primary aircraft structure , 1999 .

[35]  A. Baker,et al.  Scarf repairs to highly strained graphite/epoxy structure , 1999 .

[36]  A. Baker,et al.  Development of a generic repair joint for certification of bonded composite repairs , 1999 .

[37]  M. Richardson,et al.  Review of low-velocity impact properties of composite materials , 1996 .

[38]  S. H. Myhre,et al.  Repair Concepts for Advanced Composite Structures , 1978 .