A compact, multidimensional spectrofluorometer exploiting supercontinuum generation

We report a novel, compact and automated multidimensional spectrofluorometer that exploits a fibre‐laser‐pumped ultrafast supercontinuum source to provide resolution with respect to intensity, excitation and emission wavelength, decay time and polarisation. This instrument has been applied to study the photophysics of the phase‐sensitive membrane probe di‐4‐ANEPPDHQ and to characterise protein‐protein interactions via Förster resonance energy transfer. It can be applied to in situ measurements via a fibre‐optic probe in medical and other contexts and is demonstrated here to provide a comprehensive characterisation of tissue autofluorescence. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  P. French,et al.  A hyperspectral fluorescence lifetime probe for skin cancer diagnosis. , 2007, The Review of scientific instruments.

[2]  N. Ramanujam,et al.  In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia , 2007, Proceedings of the National Academy of Sciences.

[3]  Dylan M Owen,et al.  Excitation-resolved hyperspectral fluorescence lifetime imaging using a UV-extended supercontinuum source. , 2007, Optics letters.

[4]  P. French,et al.  Rapid hyperspectral fluorescence lifetime imaging , 2007, Microscopy research and technique.

[5]  N. Tamai,et al.  Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy. , 2007, Analytical chemistry.

[6]  Elizabeth A Jares-Erijman,et al.  Imaging molecular interactions in living cells by FRET microscopy. , 2006, Current opinion in chemical biology.

[7]  M. Neil,et al.  Fluorescence lifetime imaging provides enhanced contrast when imaging the phase-sensitive dye di-4-ANEPPDHQ in model membranes and live cells. , 2006, Biophysical journal.

[8]  A. Heron,et al.  The diversity of the liquid ordered (Lo) phase of phosphatidylcholine/cholesterol membranes: a variable temperature multinuclear solid-state NMR and x-ray diffraction study. , 2006, Biophysical journal.

[9]  W. Becker Advanced Time-Correlated Single Photon Counting Techniques , 2005 .

[10]  A. deMello,et al.  Time-resolved fluorescence imaging of solvent interactions in microfluidic devices. , 2005, Optics express.

[11]  Leslie M Loew,et al.  Cholesterol-enriched lipid domains can be visualized by di-4-ANEPPDHQ with linear and nonlinear optics. , 2005, Biophysical journal.

[12]  C. Dunsby,et al.  An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy , 2004, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[13]  H. Gerritsen,et al.  Fast fluorescence lifetime imaging of calcium in living cells. , 2004, Journal of biomedical optics.

[14]  John White,et al.  Simultaneous two-photon spectral and lifetime fluorescence microscopy. , 2004, Applied optics.

[15]  B. Salzberg,et al.  Novel naphthylstyryl-pyridinium potentiometric dyes offer advantages for neural network analysis , 2004, Journal of Neuroscience Methods.

[16]  J. Siegel,et al.  Time-resolved fluorescence anisotropy imaging applied to live cells. , 2004, Optics letters.

[17]  Klaus Benndorf,et al.  FRET between cardiac Na+ channel subunits measured with a confocal microscope and a streak camera , 2004, Nature Biotechnology.

[18]  Qiyin Fang,et al.  Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics. , 2004, The Review of scientific instruments.

[19]  Enrico Gratton,et al.  Laurdan and Prodan as Polarity-Sensitive Fluorescent Membrane Probes , 1998, Journal of Fluorescence.

[20]  N. Kitamura,et al.  Thermal Phase Transition of an Aqueous Poly(N-isopropylacrylamide) Solution in a Polymer Microchannel-Microheater Chip , 2003 .

[21]  V. Subramaniam,et al.  Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM). , 2002, Biophysical journal.

[22]  Mark Van der Auweraer,et al.  New picosecond laser system for easy tunability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation , 2001 .

[23]  Enrico Gratton,et al.  A Model for the Interaction of 6‐Lauroyl‐2‐(N,N‐dimethylamino)naphthalene with Lipid Environments: Implications for Spectral Properties , 1999, Photochemistry and photobiology.

[24]  Georges Wagnières,et al.  Time-resolved spectrofluorometer for clinical tissue characterization during endoscopy , 1999 .

[25]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[26]  E. Ikonen,et al.  Functional rafts in cell membranes , 1997, Nature.

[27]  E. Sevick-Muraca,et al.  Quantitative optical spectroscopy for tissue diagnosis. , 1996, Annual review of physical chemistry.

[28]  Y. K. Levine,et al.  Quantitative pH imaging in cells using confocal fluorescence lifetime imaging microscopy. , 1995, Analytical biochemistry.

[29]  James H. Davis,et al.  Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. , 1990, Biochemistry.

[30]  D. O'connor,et al.  Time-Correlated Single Photon Counting , 1984 .

[31]  E. Gratton,et al.  A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution. , 1983, Biophysical journal.

[32]  M. P. Heyn Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments , 1979, FEBS letters.

[33]  D. Birch,et al.  A single-photon counting fluorescence decay-time spectrometer , 1977 .

[34]  J. M. Morris,et al.  PICOSECOND FLUORESCENCE SPECTROSCOPY USING A STREAK CAMERA , 1977 .

[35]  R. D. Spencer,et al.  MEASUREMENTS OF SUBNANOSECOND FLUORESCENCE LIFETIMES WITH A CROSS‐CORRELATION PHASE FLUOROMETER * , 1969 .

[36]  Sidney Udenfriend,et al.  PRINCIPLES OF FLUORESCENCE , 1969 .

[37]  S. J. Strickler,et al.  Relationship between Absorption Intensity and Fluorescence Lifetime of Molecules , 1962 .