Phenylalanine promotes interaction of transmembrane domains via GxxxG motifs.

Interactions of transmembrane helices play a crucial role in the folding and oligomerisation of integral membrane proteins. In order to uncover novel sequence motifs mediating these interactions, we randomised one face of a transmembrane helix with a set of non-polar or moderately polar amino acids. Those sequences capable of self-interaction upon integration into bacterial inner membranes were selected by means of the ToxR/POSSYCCAT system. A comparison between low/medium-affinity and high-affinity sequences reveals that high-affinity sequences are strongly enriched in phenylalanine residues that are frequently observed at the -3 position of GxxxG motifs, thus yielding FxxGxxxG motifs. Mutation of Phe or GxxxG in selected sequences significantly reduces self-interaction of the transmembrane domains without affecting their efficiency of membrane integration. Conversely, grafting FxxGxxxG onto unrelated transmembrane domains strongly enhances their interaction. Further, we find that FxxGxxxG is significantly over-represented in transmembrane domains of bitopic membrane proteins. The same motif contributes to self-interaction of the vesicular stomatitis virus G protein transmembrane domain. We conclude that Phe stabilises membrane-spanning GxxxG motifs. This is one example of how the role of certain side-chains in helix-helix interfaces is modulated by sequence context.

[1]  Thomas Rattei,et al.  SIMAP: the similarity matrix of proteins , 2006, Nucleic Acids Res..

[2]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[3]  James U. Bowie,et al.  Helix packing angle preferences , 1997, Nature Structural Biology.

[4]  I. Arkin,et al.  Experimental Measurement of the Strength of a Cα−H···O Bond in a Lipid Bilayer , 2004 .

[5]  James H. Prestegard,et al.  A Transmembrane Helix Dimer: Structure and Implications , 1997, Science.

[6]  Janet M. Thornton,et al.  The interaction between phenylalanine rings in proteins , 1985 .

[7]  D. Engelman,et al.  Membrane protein folding and oligomerization: the two-stage model. , 1990, Biochemistry.

[8]  L. Dubrovsky,et al.  Sequence context modulates the stability of a GxxxG-mediated transmembrane helix-helix dimer. , 2004, Journal of molecular biology.

[9]  M. Gerstein,et al.  Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions. , 2000, Journal of molecular biology.

[10]  D. Engelman,et al.  Helical membrane protein folding, stability, and evolution. , 2000, Annual review of biochemistry.

[11]  D. Engelman,et al.  A dimerization motif for transmembrane α–helices , 1994, Nature Structural Biology.

[12]  D. Engelman,et al.  The GxxxG motif: a framework for transmembrane helix-helix association. , 2000, Journal of molecular biology.

[13]  Mathias W. Hofmann,et al.  Self-interaction of a SNARE transmembrane domain promotes the hemifusion-to-fusion transition. , 2006, Journal of molecular biology.

[14]  T. Kunkel Rapid and efficient site-specific mutagenesis without phenotypic selection. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[15]  J. Sühnel,et al.  C-h⋯π-interactions in proteins , 2001 .

[16]  D. Z. Cleverley,et al.  The transmembrane domain in viral fusion: essential role for a conserved glycine residue in vesicular stomatitis virus G protein. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Stephanie Unterreitmeier,et al.  Tryptophan supports interaction of transmembrane helices. , 2005, Journal of molecular biology.

[18]  Cathy H. Wu,et al.  The Universal Protein Resource (UniProt) , 2004, Nucleic Acids Res..

[19]  D. Langosch,et al.  The dimerization motif of the glycophorin A transmembrane segment in membranes: Importance of glycine residues , 1998, Protein science : a publication of the Protein Society.

[20]  D. Engelman,et al.  Sequence specificity in the dimerization of transmembrane alpha-helices. , 1992, Biochemistry.

[21]  A. Brunger,et al.  Statistical analysis of predicted transmembrane α-helices , 1998 .

[22]  D. Engelman,et al.  Improved prediction for the structure of the dimeric transmembrane domain of glycophorin A obtained through global searching , 1996, Proteins.

[23]  H. Fritz,et al.  Dimerisation of the glycophorin A transmembrane segment in membranes probed with the ToxR transcription activator. , 1996, Journal of molecular biology.

[24]  D. Langosch,et al.  Role of the Vam3p transmembrane segment in homodimerization and SNARE complex formation. , 2006, Biochemistry.

[25]  Alessandro Senes,et al.  The Cα—H⋅⋅⋅O hydrogen bond: A determinant of stability and specificity in transmembrane helix interactions , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Karen Hecht,et al.  Aromatic and cation-pi interactions enhance helix-helix association in a membrane environment. , 2007, Biochemistry.

[27]  Dieter Langosch,et al.  Interaction of transmembrane helices by a knobs‐into‐holes packing characteristic of soluble coiled coils , 1998, Proteins.

[28]  D. Engelman,et al.  Motifs of serine and threonine can drive association of transmembrane helices. , 2002, Journal of molecular biology.

[29]  David C. Jones,et al.  A mutation data matrix for transmembrane proteins , 1994, FEBS letters.

[30]  S. Roche,et al.  Crystal Structure of the Low-pH Form of the Vesicular Stomatitis Virus Glycoprotein G , 2006, Science.

[31]  T. Steiner,et al.  Hydrogen bonds with pi-acceptors in proteins: frequencies and role in stabilizing local 3D structures. , 2001, Journal of molecular biology.

[32]  J Sühnel,et al.  More Hydrogen Bonds for the (structural) Biologist , 2022 .

[33]  M. Gerstein,et al.  Genomic analysis of membrane protein families: abundance and conserved motifs , 2002, Genome Biology.

[34]  D. S. Keller,et al.  Role for adenosine triphosphate in regulating the assembly and transport of vesicular stomatitis virus G protein trimers , 1987, The Journal of cell biology.

[35]  D. Engelman,et al.  TOXCAT: a measure of transmembrane helix association in a biological membrane. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[36]  D. Engelman,et al.  The glycophorin A transmembrane domain dimer: sequence-specific propensity for a right-handed supercoil of helices. , 1992, Biochemistry.

[37]  T. Steitz,et al.  Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. , 1986, Annual review of biophysics and biophysical chemistry.

[38]  N. Greenfield,et al.  VSV transmembrane domain (TMD) peptide promotes PEG-mediated fusion of liposomes in a conformationally sensitive fashion. , 2002, Biochemistry.

[39]  S. White,et al.  The preference of tryptophan for membrane interfaces. , 1998, Biochemistry.

[40]  Doron Gerber,et al.  Specificity in Transmembrane Helix-Helix Interactions Mediated by Aromatic Residues* , 2007, Journal of Biological Chemistry.

[41]  Thomas A. Kunkel,et al.  Rapid and efficient site-specific mutagenesis without phenotypic selection. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[42]  J M Thornton,et al.  Pi-pi interactions: the geometry and energetics of phenylalanine-phenylalanine interactions in proteins. , 1991, Journal of molecular biology.

[43]  Yohan Lee,et al.  Snorkeling preferences foster an amino acid composition bias in transmembrane helices. , 2004, Journal of molecular biology.

[44]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[45]  Stephen H. White,et al.  Experimentally determined hydrophobicity scale for proteins at membrane interfaces , 1996, Nature Structural Biology.

[46]  Jie Liang,et al.  Helix-helix packing and interfacial pairwise interactions of residues in membrane proteins. , 2001, Journal of molecular biology.

[47]  S. O. Smith,et al.  Structure of the transmembrane dimer interface of glycophorin A in membrane bilayers. , 2001, Biochemistry.

[48]  D. Engelman,et al.  Sequence context strongly modulates association of polar residues in transmembrane helices. , 2003, Journal of molecular biology.

[49]  D. Engelman,et al.  The Affinity of GXXXG Motifs in Transmembrane Helix-Helix Interactions Is Modulated by Long-range Communication* , 2004, Journal of Biological Chemistry.

[50]  D. Engelman,et al.  Motifs of two small residues can assist but are not sufficient to mediate transmembrane helix interactions. , 2004, Journal of molecular biology.

[51]  R. Pipkorn,et al.  Peptide Mimics of the Vesicular Stomatitis Virus G-protein Transmembrane Segment Drive Membrane Fusion in Vitro* , 2001, The Journal of Biological Chemistry.

[52]  Jie Liang,et al.  Higher-order interhelical spatial interactions in membrane proteins. , 2003, Journal of molecular biology.

[53]  D. Langosch,et al.  A Heptad Motif of Leucine Residues Found in Membrane Proteins Can Drive Self-assembly of Artificial Transmembrane Segments* , 1999, The Journal of Biological Chemistry.

[54]  G. McGaughey,et al.  pi-Stacking interactions. Alive and well in proteins. , 1998, The Journal of biological chemistry.

[55]  K. Fleming,et al.  Complex interactions at the helix-helix interface stabilize the glycophorin A transmembrane dimer. , 2004, Journal of molecular biology.

[56]  Mathias W. Hofmann,et al.  The role of transmembrane domains in membrane fusion , 2007, Cellular and Molecular Life Sciences.

[57]  W. DeGrado,et al.  Helix-packing motifs in membrane proteins , 2006, Proceedings of the National Academy of Sciences.

[58]  S. Roche,et al.  Structure of the Prefusion Form of the Vesicular Stomatitis Virus Glycoprotein G , 2007, Science.

[59]  B. Matthews,et al.  Intrahelical hydrogen bonding of serine, threonine and cysteine residues within alpha-helices and its relevance to membrane-bound proteins. , 1984, Journal of molecular biology.

[60]  H. Fritz,et al.  Membrane insertion of the bacterial signal transduction protein ToxR and requirements of transcription activation studied by modular replacement of different protein substructures. , 1995, The EMBO journal.

[61]  A. Helenius,et al.  Posttranslational folding of vesicular stomatitis virus G protein in the ER: involvement of noncovalent and covalent complexes , 1993, The Journal of cell biology.

[62]  G A Petsko,et al.  Aromatic-aromatic interaction: a mechanism of protein structure stabilization. , 1985, Science.

[63]  J U Bowie,et al.  Helix packing in membrane proteins. , 1997, Journal of molecular biology.

[64]  Fan Zhang,et al.  Hemifusion in SNARE-mediated membrane fusion , 2005, Nature Structural &Molecular Biology.

[65]  D. Langosch,et al.  In Vitro Selection of Membrane-spanning Leucine Zipper Protein-Protein Interaction Motifs Using POSSYCCAT* , 2001, The Journal of Biological Chemistry.

[66]  Stephanie Unterreitmeier,et al.  An extended ToxR POSSYCCAT system for positive and negative selection of self-interacting transmembrane domains. , 2007, Journal of microbiological methods.

[67]  D. Langosch,et al.  In Vitro Selection of Self‐Interacting Transmembrane Segments‐‐Membrane Proteins Approached from a Different Perspective , 2002, IUBMB life.