A passivity-based observer for neural mass models

[2]  Qing Gao,et al.  A novel observer design method for neural mass models , 2015 .

[3]  Yuanqing Xia,et al.  Robust tracking control for wheeled mobile robot based on extended state observer , 2016, Adv. Robotics.

[4]  P. Ruoff,et al.  The Goodwin model: simulating the effect of light pulses on the circadian sporulation rhythm of Neurospora crassa. , 2001, Journal of theoretical biology.

[5]  Petar V. Kokotovic,et al.  Observer-based control of systems with slope-restricted nonlinearities , 2001, IEEE Trans. Autom. Control..

[6]  Ali Zemouche,et al.  A unified Hinfinity adaptive observer synthesis method for a class of systems with both Lipschitz and monotone nonlinearities , 2009, Syst. Control. Lett..

[7]  John T. Wen,et al.  Cooperative Control Design - A Systematic, Passivity-Based Approach , 2011, Communications and control engineering.

[8]  F. H. Lopes da Silva,et al.  Model of brain rhythmic activity , 1974, Kybernetik.

[9]  M. Ghil,et al.  Fixed points, stable manifolds, weather regimes, and their predictability. , 2009, Chaos.

[10]  Murat Arcak,et al.  Observer design for systems with multivariable monotone nonlinearities , 2003, Syst. Control. Lett..

[11]  A. Schaft L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences 218 , 1996 .

[12]  Chung Seop Jeong,et al.  Lyapunov-based design of resilient mixed MSE-dissipative-type state observers for a class of nonlinear systems and general performance criteria , 2011, Int. J. Syst. Sci..

[13]  D. Luenberger Observing the State of a Linear System , 1964, IEEE Transactions on Military Electronics.

[14]  Jun Ohta,et al.  Wireless image-data transmission from an implanted image sensor through a living mouse brain by intra body communication , 2016 .

[15]  Dragan Nesic,et al.  A robust circle criterion observer with application to neural mass models , 2012, Autom..

[16]  State observers and Kalman filtering for high performance vibration isolation systems. , 2014, The Review of scientific instruments.

[17]  Dipak M. Adhyaru,et al.  State observer design for nonlinear systems using neural network , 2012, Appl. Soft Comput..

[18]  Qingdu Li,et al.  New bifurcations in the simplest passive walking model. , 2013, Chaos.

[19]  Amr M. Baz,et al.  A neural observer for dynamic systems , 1992 .

[20]  M. Zeitz The extended Luenberger observer for nonlinear systems , 1987 .

[21]  Ju H. Park,et al.  State estimation of memristor-based recurrent neural networks with time-varying delays based on passivity theory , 2014, Complex..

[22]  Petar V. Kokotovic,et al.  Nonlinear observers: a circle criterion design and robustness analysis , 2001, Autom..

[23]  R. Marino Adaptive observers for single output nonlinear systems , 1990 .

[24]  Kwanghee Nam,et al.  An approximate nonlinear observer with polynomial coordinate transformation maps , 1997, IEEE Trans. Autom. Control..

[25]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[26]  Fabrice Wendling,et al.  Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals , 2000, Biological Cybernetics.

[27]  K. Narendra,et al.  Synthesis of an adaptive observer using Lyapunov's direct method , 1973 .

[28]  Andrea Maria Zanchettin,et al.  Passivity-based control of robotic manipulators for safe cooperation with humans , 2015, Int. J. Control.

[29]  G. Leonov,et al.  Frequency-Domain Methods for Nonlinear Analysis: Theory and Applications , 1996 .

[30]  A. Rantzer On the Kalman-Yakubovich-Popov lemma , 1996 .