JWST Reveals a Possible z ∼ 11 Galaxy Merger in Triply Lensed MACS0647–JD

MACS0647–JD is a triply lensed z ∼ 11 galaxy originally discovered with the Hubble Space Telescope. The three lensed images are magnified by factors of ∼8, 5, and 2 to AB mag 25.1, 25.6, and 26.6 at 3.5 μm. The brightest is over a magnitude brighter than other galaxies recently discovered at similar redshifts z > 10 with JWST. Here, we report new JWST imaging that clearly resolves MACS0647–JD as having two components that are either merging galaxies or stellar complexes within a single galaxy. The brighter larger component “A” is intrinsically very blue (β ∼ −2.6 ± 0.1), likely due to very recent star formation and no dust, and is spatially extended with an effective radius ∼70 ± 24 pc. The smaller component “B” (r ∼ 20 −5+8 pc) appears redder (β ∼ −2 ± 0.2), likely because it is older (100–200 Myr) with mild dust extinction (A V ∼ 0.1 mag). With an estimated stellar mass ratio of roughly 2:1 and physical projected separation ∼400 pc, we may be witnessing a galaxy merger 430 million years after the Big Bang. We identify galaxies with similar colors in a high-redshift simulation, finding their star formation histories to be dissimilar, which is also suggested by the spectral energy distribution fitting, suggesting they formed further apart. We also identify a candidate companion galaxy “C” ∼3 kpc away, likely destined to merge with A and B. Upcoming JWST Near Infrared Spectrograph observations planned for 2023 January will deliver spectroscopic redshifts and more physical properties for these tiny magnified distant galaxies observed in the early universe.

[1]  C. Conselice,et al.  Spatially Resolved Stellar Populations of 0.3 < z < 6.0 Galaxies in WHL 0137–08 and MACS 0647+70 Clusters as Revealed by JWST: How Do Galaxies Grow and Quench over Cosmic Time? , 2023, The Astrophysical Journal.

[2]  L. Hernquist,et al.  The merger and assembly histories of Milky Way- and M31-like galaxies with TNG50: disk survival through mergers , 2022, 2211.00036.

[3]  L. Hunt,et al.  The assembly of dusty galaxies at $z \geq 4$: the build-up of stellar mass and its scaling relations with hints from early JWST data , 2022, 2209.05496.

[4]  J. Richard,et al.  Star formation at the smallest scales; A JWST study of the clump populations in SMACS0723 , 2022, Monthly Notices of the Royal Astronomical Society.

[5]  S. Ravindranath,et al.  JWST Imaging of Earendel, the Extremely Magnified Star at Redshift z = 6.2 , 2022, The Astrophysical Journal Letters.

[6]  I. Paris,et al.  Constraining the physical properties of the first lensed $z\sim10-16$ galaxy candidates with JWST , 2022, 2208.05473.

[7]  M. Oguri,et al.  A Comprehensive Study of Galaxies at z ∼ 9–16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch , 2022, The Astrophysical Journal Supplement Series.

[8]  S. Charlot,et al.  On the ages of bright galaxies ∼500 Myr after the Big Bang: insights into star formation activity at z ≳ 15 with JWST , 2022, Monthly Notices of the Royal Astronomical Society.

[9]  S. Charlot,et al.  JWST/NIRCam Observations of Stars and HII Regions in z ≃ 6 − 8 Galaxies: Properties of Star Forming Complexes on 150 pc Scales , 2022, Monthly Notices of the Royal Astronomical Society.

[10]  J. Kneib,et al.  Revealing Galaxy Candidates out to $z \sim 16$ with JWST Observations of the Lensing Cluster SMACS0723 , 2022, 2207.12338.

[11]  J. Dunlop,et al.  The evolution of the galaxy UV luminosity function at redshifts z ≃ 8 – 15 from deep JWST and ground-based near-infrared imaging , 2022, Monthly Notices of the Royal Astronomical Society.

[12]  L. Y. Aaron Yung,et al.  A Long Time Ago in a Galaxy Far, Far Away: A Candidate z ∼ 12 Galaxy in Early JWST CEERS Imaging , 2022, The Astrophysical Journal Letters.

[13]  A. Zitrin,et al.  First Batch of Candidate Galaxies at Redshifts 11 to 20 Revealed by the James Webb Space Telescope Early Release Observations , 2022, 2207.11558.

[14]  A. Fontana,et al.  Early Results from GLASS-JWST. X. Rest-frame UV-optical Properties of Galaxies at 7 < z < 9 , 2022, The Astrophysical Journal Letters.

[15]  C. Conselice,et al.  Discovery and properties of ultra-high redshift galaxies (9 < z < 12) in the JWST ERO SMACS 0723 Field , 2022, Monthly Notices of the Royal Astronomical Society.

[16]  R. Bouwens,et al.  Two Remarkably Luminous Galaxy Candidates at z ≈ 10–12 Revealed by JWST , 2022, The Astrophysical Journal Letters.

[17]  C. Conselice,et al.  Panic! at the Disks: First Rest-frame Optical Observations of Galaxy Structure at z > 3 with JWST in the SMACS 0723 Field , 2022, The Astrophysical Journal Letters.

[18]  A. Fontana,et al.  Early Results from GLASS-JWST. III. Galaxy Candidates at z ∼9–15 , 2022, The Astrophysical Journal Letters.

[19]  G. Yepes,et al.  Astraeus VII: The environmental-dependent assembly of galaxies in the Epoch of Reionization , 2022, Monthly Notices of the Royal Astronomical Society.

[20]  C. Conselice,et al.  Unscrambling the Lensed Galaxies in JWST Images behind SMACS 0723 , 2022, The Astrophysical Journal Letters.

[21]  C. Baugh,et al.  The buildup of galaxies and their spheroids: The contributions of mergers, disc instabilities and star formation , 2022, Monthly Notices of the Royal Astronomical Society.

[22]  Kristen B. Wymer,et al.  The Science Performance of JWST as Characterized in Commissioning , 2022, Publications of the Astronomical Society of the Pacific.

[23]  S. Ravindranath,et al.  RELICS: Small-scale Star Formation in Lensed Galaxies at z = 6–10 , 2022, The Astrophysical Journal.

[24]  Miguel de Val-Borro,et al.  The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package , 2022, The Astrophysical Journal.

[25]  R. Bouwens,et al.  Deep Spitzer/IRAC Data for z ∼ 10 Galaxies Reveal Blue Balmer Break Colors: Young Stellar Populations at ∼500 Myr of Cosmic Time , 2022, The Astrophysical Journal.

[26]  S. Charlot,et al.  Star formation histories of UV-luminous galaxies at z ≃ 6.8: Implications for stellar mass assembly at early cosmic times , 2022, Monthly Notices of the Royal Astronomical Society.

[27]  P. P. van der Werf,et al.  The ALMA REBELS Survey: Specific Star-Formation Rates in the Reionization Era , 2022, Monthly Notices of the Royal Astronomical Society.

[28]  H. Rix,et al.  A time-resolved picture of our Milky Way’s early formation history , 2022, Nature.

[29]  J. Hodge,et al.  The ALMA REBELS Survey: the dust content of $z \sim 7$ Lyman Break Galaxies , 2022, 2202.11118.

[30]  E. Stanway,et al.  New Insights into the Evolution of Massive Stars and Their Effects on Our Understanding of Early Galaxies , 2022, 2202.01413.

[31]  L. Y. Aaron Yung,et al.  On the Stellar Populations of Galaxies at z = 9–11: The Growth of Metals and Stellar Mass at Early Times , 2021, The Astrophysical Journal.

[32]  J. Dunlop,et al.  The discovery of rest-frame UV colour gradients and a diversity of dust morphologies in bright z ~ 7 Lyman-break galaxies , 2021, 2110.06236.

[33]  P. P. van der Werf,et al.  Reionization Era Bright Emission Line Survey: Selection and Characterization of Luminous Interstellar Medium Reservoirs in the z > 6.5 Universe , 2021, 2106.13719.

[34]  M. Meneghetti,et al.  High star cluster formation efficiency in the strongly lensed Sunburst Lyman-continuum galaxy at z=2.37 , 2021, Astronomy & Astrophysics.

[35]  Xiaohui Fan,et al.  Trinity I: Self-consistently modeling the dark matter halo–galaxy–supermassive black hole connection from z = 0 − 10 , 2021, Monthly Notices of the Royal Astronomical Society.

[36]  R. Kotak,et al.  Gaia Early Data Release 3 , 2021, Astronomy & Astrophysics.

[37]  Yen-Ting Lin,et al.  Introducing piXedfit: A Spectral Energy Distribution Fitting Code Designed for Resolved Sources , 2021, The Astrophysical Journal Supplement Series.

[38]  P. Cargile,et al.  Reconstructing the Last Major Merger of the Milky Way with the H3 Survey , 2021, The Astrophysical Journal.

[39]  Benjamin D. Johnson,et al.  Stellar Population Inference with Prospector , 2020, The Astrophysical Journal Supplement Series.

[40]  B. Robertson,et al.  The Lyman Continuum Escape Survey: Connecting Time-dependent [O iii] and [O ii] Line Emission with Lyman Continuum Escape Fraction in Simulations of Galaxy Formation , 2020, The Astrophysical Journal.

[41]  L. Pentericci,et al.  Astraeus – II. Quantifying the impact of cosmic variance during the Epoch of Reionization , 2020, 2004.11096.

[42]  Benjamin D. Johnson,et al.  Timing the Early Assembly of the Milky Way with the H3 Survey , 2020, The Astrophysical Journal.

[43]  G. Yepes,et al.  Astraeus I: the interplay between galaxy formation and reionization , 2020, 2004.08401.

[44]  J. Eldridge The things binaries do … , 2020, Astronomy & Geophysics.

[45]  M. Volonteri,et al.  Reionization with galaxies and active galactic nuclei , 2020, Monthly Notices of the Royal Astronomical Society.

[46]  A. Cimatti,et al.  The ALPINE-ALMA [CII] survey , 2019, Astronomy & Astrophysics.

[47]  A. McConnachie,et al.  A definitive merger-AGN connection at z ∼ 0 with CFIS: mergers have an excess of AGN and AGN hosts are more frequently disturbed , 2019, Monthly Notices of the Royal Astronomical Society.

[48]  C. Conselice,et al.  Observational Constraints on the Merger History of Galaxies since z ≈ 6: Probabilistic Galaxy Pair Counts in the CANDELS Fields , 2019, The Astrophysical Journal.

[49]  M. Nonino,et al.  RELICS: Reionization Lensing Cluster Survey , 2019, The Astrophysical Journal.

[50]  L. Y. Aaron Yung,et al.  Semi-analytic forecasts for JWST – II. Physical properties and scaling relations for galaxies at z = 4–10 , 2019, Monthly Notices of the Royal Astronomical Society.

[51]  Benjamin D. Johnson,et al.  How to Measure Galaxy Star Formation Histories. II. Nonparametric Models , 2018, The Astrophysical Journal.

[52]  Andrew P. Hearin,et al.  UniverseMachine: The correlation between galaxy growth and dark matter halo assembly from z = 0−10 , 2018, Monthly Notices of the Royal Astronomical Society.

[53]  Anthony G. A. Brown,et al.  The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk , 2018, Nature.

[54]  Benjamin D. Johnson,et al.  A Redshift-independent Efficiency Model: Star Formation and Stellar Masses in Dark Matter Halos at z ≳ 4 , 2018, The Astrophysical Journal.

[55]  M. Boquien,et al.  Dust Attenuation Curves in the Local Universe: Demographics and New Laws for Star-forming Galaxies and High-redshift Analogs , 2018, 1804.05850.

[56]  Adrian M. Price-Whelan,et al.  Binary Companions of Evolved Stars in APOGEE DR14: Search Method and Catalog of ∼5000 Companions , 2018, The Astronomical Journal.

[57]  Sergey E. Koposov,et al.  Co-formation of the disc and the stellar halo , 2018, 1802.03414.

[58]  L. Amendola,et al.  H0 from cosmic chronometers and Type Ia supernovae, with Gaussian Processes and the novel Weighted Polynomial Regression method , 2018, The Fifteenth Marcel Grossmann Meeting.

[59]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[60]  R. Davé,et al.  Inferring the star formation histories of massive quiescent galaxies with bagpipes: evidence for multiple quenching mechanisms , 2017, Monthly Notices of the Royal Astronomical Society.

[61]  David O. Jones,et al.  Type Ia Supernova Distances at Redshift >1.5 from the Hubble Space Telescope Multi-cycle Treasury Programs: The Early Expansion Rate , 2017, 1710.00844.

[62]  M. Postman,et al.  Crowded Field Galaxy Photometry: Precision Colors in the CLASH Clusters , 2017, 1709.01925.

[63]  M. Postman,et al.  The Relationship Between Brightest Cluster Galaxy Star Formation and the Intracluster Medium in CLASH , 2017, 1701.05903.

[64]  B. O’Shea,et al.  First Light: exploring the Spectra of High-Redshift Galaxies in the Renaissance Simulations , 2017, 1701.02749.

[65]  B. Garilli,et al.  The VIMOS Ultra-Deep Survey: A major merger origin for the high fraction of galaxies at $2 , 2016, 1611.05869.

[66]  Kyle Barbary,et al.  SEP: Source Extractor as a library , 2016, J. Open Source Softw..

[67]  Benjamin D. Johnson,et al.  Deriving Physical Properties from Broadband Photometry with Prospector: Description of the Model and a Demonstration of its Accuracy Using 129 Galaxies in the Local Universe , 2016, 1609.09073.

[68]  J. Diego,et al.  GEOMETRIC CORROBORATION OF THE EARLIEST LENSED GALAXY AT z ≃ 10.8 FROM ROBUST FREE-FORM MODELLING , 2016, 1608.06942.

[69]  G. Bruzual,et al.  Modelling the nebular emission from primeval to present-day star-forming galaxies , 2016, 1607.06086.

[70]  M. Meneghetti,et al.  The Frontier Fields lens modelling comparison project , 2016, 1606.04548.

[71]  J. Anderson,et al.  The Frontier Fields: Survey Design and Initial Results , 2016, 1605.06567.

[72]  S. Charlot,et al.  Modelling and interpreting spectral energy distributions of galaxies with BEAGLE , 2016, 1603.03037.

[73]  M. Hilton,et al.  Coevolution of brightest cluster galaxies and intracluster light using CLASH , 2015, 1503.04321.

[74]  Annalisa Pillepich,et al.  The merger rate of galaxies in the Illustris simulation: a comparison with observations and semi-empirical models , 2015, 1502.01339.

[75]  B. Garilli,et al.  The evolving star formation rate: M⋆ relation and sSFR since z ≃ 5 from the VUDS spectroscopic survey , 2014, 1411.5687.

[76]  J. Dunlop,et al.  Essential physics of early galaxy formation , 2014, 1405.4862.

[77]  T. U. O. Tokyo,et al.  An updated analytic model for attenuation by the intergalactic medium , 2014, 1402.0677.

[78]  David O. Jones,et al.  TYPE Ia SUPERNOVA RATE MEASUREMENTS TO REDSHIFT 2.5 FROM CANDELS: SEARCHING FOR PROMPT EXPLOSIONS IN THE EARLY UNIVERSE , 2014, 1401.7978.

[79]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[80]  Devin W. Silvia,et al.  ENZO: AN ADAPTIVE MESH REFINEMENT CODE FOR ASTROPHYSICS , 2013, J. Open Source Softw..

[81]  Z. Haiman,et al.  Focusing on warm dark matter with lensed high-redshift galaxies , 2013, 1306.0009.

[82]  A. Dekel,et al.  Toy models for galaxy formation versus simulations , 2013, 1303.3009.

[83]  T. Lauer,et al.  A magnified young galaxy from about 500 million years after the Big Bang , 2012, Nature.

[84]  A. J. Cenarro,et al.  An updated MILES stellar library and stellar population models , 2011, 1107.2303.

[85]  O. Lahav,et al.  THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW , 2011, 1106.3328.

[86]  M. Oguri The Mass Distribution of SDSS J1004$+$4112 Revisited , 2010, 1005.3103.

[87]  Simon Portegies Zwart,et al.  Young Massive Star Clusters , 2010, 1002.1961.

[88]  N. Benı́tez,et al.  Strong-lensing analysis of a complete sample of 12 MACS clusters at z > 0.5: mass models and Einstein radii , 2010, 1002.0521.

[89]  Chien Y. Peng,et al.  DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS , 2009, 0912.0731.

[90]  P. Hopkins,et al.  A maximum stellar surface density in dense stellar systems , 2009, 0908.4088.

[91]  E. Stanway,et al.  Spectral population synthesis including massive binaries , 2009, 0908.1386.

[92]  D. Coe,et al.  New Multiply-Lensed Galaxies Identified in ACS/NIC3 Observations of Cl0024+1654, Using an Improved Mass Model , 2009, 0902.3971.

[93]  J. Kneib,et al.  Multiscale cluster lens mass mapping - I. Strong lensing modelling , 2009, 0901.3792.

[94]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[95]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[96]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[97]  Belgium,et al.  Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP- , 2007, 0711.4922.

[98]  J. Kneib,et al.  A Bayesian approach to strong lensing modelling of galaxy clusters , 2007, 0706.0048.

[99]  F. Feroz,et al.  Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.

[100]  A. Edge,et al.  A Complete Sample of 12 Very X-Ray Luminous Galaxy Clusters at z > 0.5 , 2007, astro-ph/0703394.

[101]  -INAF,et al.  Evolution of asymptotic giant branch stars. I. Updated synthetic TP-AGB models and their basic calibration , 2007, astro-ph/0703139.

[102]  R. Peletier,et al.  MILES: A Medium resolution INT Library of Empirical Spectra , 2006, astro-ph/0607009.

[103]  S. Phleps,et al.  The Merger Rate of Massive Galaxies , 2006, astro-ph/0602038.

[104]  Max Tegmark,et al.  Combined reconstruction of weak and strong lensing data with WSLAP , 2005, Monthly Notices of the Royal Astronomical Society.

[105]  R. Bouwens,et al.  Strong-Lensing Analysis of A1689 from Deep Advanced Camera Images , 2004, astro-ph/0409132.

[106]  Max Tegmark,et al.  Non-parametric inversion of strong lensing systems , 2004, astro-ph/0408418.

[107]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[108]  P. Kroupa The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems , 2002, Science.

[109]  S. M. Fall,et al.  A Simple Model for the Absorption of Starlight by Dust in Galaxies , 2000, astro-ph/0003128.

[110]  L. Girardi,et al.  Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 , and from to 0.03 , 1999, astro-ph/9910164.

[111]  G. Ferland,et al.  CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra , 1998 .

[112]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[113]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[114]  L. Hernquist,et al.  Gasdynamics and starbursts in major mergers , 1995, astro-ph/9512099.

[115]  G. Gilmore,et al.  The distribution of low-mass stars in the Galactic disc , 1993 .

[116]  Y. Pei,et al.  Interstellar dust from the Milky Way to the Magellanic Clouds , 1992 .

[117]  J. Barnes Transformations of galaxies. I: Mergers of equal-mass stellar disks , 1992 .

[118]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[119]  J. B. Oke Absolute spectral energy distributions for white dwarfs , 1974 .

[120]  A. Toomre,et al.  Galactic Bridges and Tails , 1972 .

[121]  Jonathan C. McDowell,et al.  James Webb Space Telescope , 2004 .