Graph Classes with Structured Neighborhoods and Algorithmic Applications

Boolean-width is a recently introduced graph width parameter. If a boolean decomposition of width w is given, several NP-complete problems, such as Maximum Weight Independent Set, k-Coloring and Minimum Weight Dominating Set are solvable in O*(2O(w)) time [6]. In this paper we study graph classes for which we can compute a decomposition of logarithmic boolean-width in polynomial time. Since 2O(logn)=nO(1), this gives polynomial time algorithms for the above problems on these graph classes. For interval graphs we show how to construct decompositions where neighborhoods of vertex subsets are nested. We generalize this idea to neighborhoods that can be represented by a constant number of vertices. Moreover we show that these decompositions have boolean-width O(logn). Graph classes having such decompositions include circular arc graphs, circular k-trapezoid graphs, convex graphs, Dilworth k graphs, k-polygon graphs and complements of k-degenerate graphs. Combined with results in [1,5], this implies that a large class of vertex subset and vertex partitioning problems can be solved in polynomial time on these graph classes.

[1]  R. Sritharan A linear time algorithm to recognize circular permutation graphs , 1996 .

[2]  Udi Rotics,et al.  On the Clique-Width of Perfect Graph Classes , 1999, WG.

[3]  Jan Arne Telle,et al.  Fast dynamic programming for locally checkable vertex subset and vertex partitioning problems , 2013, Theor. Comput. Sci..

[4]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[5]  Yaw-Ling Lin Circular and Circle Trapezoid Graphs , 2006 .

[6]  Jan Arne Telle,et al.  Fast FPT algorithms for vertex subset and vertex partitioning problems using neighborhood unions , 2009, ArXiv.

[7]  Ehab S. Elmallah,et al.  Polygon Graph Recognition , 1998, J. Algorithms.

[8]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.

[9]  Bert Gerards,et al.  Branch-Width and Well-Quasi-Ordering in Matroids and Graphs , 2002, J. Comb. Theory, Ser. B.

[10]  Jan Arne Telle,et al.  Algorithms for Vertex Partitioning Problems on Partial k-Trees , 1997, SIAM J. Discret. Math..

[11]  Kamal Jain,et al.  The Hardness of Approximating Poset Dimension , 2007, Electron. Notes Discret. Math..

[12]  Martin Farber,et al.  Domination in Permutation Graphs , 1985, J. Algorithms.

[13]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[14]  Yehoshua Perl,et al.  Clustering and domination in perfect graphs , 1984, Discret. Appl. Math..

[15]  Stefan Felsner,et al.  Recognition Algorithms for Orders of Small Width and Graphs of Small Dilworth Number , 2003, Order.

[16]  S. Lakshmivarahan,et al.  An O(N+M)-Time Algorithm for Finding a Minimum-Weight Dominating Set in a Permutation Graph , 1996, SIAM J. Comput..

[17]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[18]  Vadim V. Lozin,et al.  On the linear structure and clique-width of bipartite permutation graphs , 2003, Ars Comb..

[19]  Gabriel Renault,et al.  On the Boolean-Width of a Graph: Structure and Applications , 2009, WG.

[20]  Jan Arne Telle,et al.  Boolean-Width of Graphs , 2009, IWPEC.

[21]  Udi Rotics,et al.  Polynomial algorithms for partitioning problems on graphs with fixed clique-width (extended abstract) , 2001, SODA '01.

[22]  Jeremy P. Spinrad,et al.  On the 2-Chain Subgraph Cover and Related Problems , 1994, J. Algorithms.

[23]  Kurt Mehlhorn,et al.  Certifying algorithms for recognizing interval graphs and permutation graphs , 2003, SODA '03.

[24]  Ross M. McConnell Linear-Time Recognition of Circular-Arc Graphs , 2003, Algorithmica.

[25]  Mihalis Yannakakis,et al.  Node-Deletion Problems on Bipartite Graphs , 1981, SIAM J. Comput..

[26]  J. Mark Keil The Complexity of Domination Problems in Circle Graphs , 1993, Discret. Appl. Math..

[27]  Vít Jelínek The Rank-Width of the Square Grid , 2008, WG.

[28]  Dieter Kratsch,et al.  Measuring the Vulnerability for Classes of Intersection Graphs , 1997, Discret. Appl. Math..

[29]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[30]  Peter Damaschke,et al.  Domination in Convex and Chordal Bipartite Graphs , 1990, Inf. Process. Lett..

[31]  M. Yannakakis The Complexity of the Partial Order Dimension Problem , 1982 .

[32]  Wen-Lian Hsu,et al.  Fast algorithms for the dominating set problem on permutation graphs , 2005, Algorithmica.

[33]  Wen-Lian Hsu Decomposition of perfect graphs , 1987, J. Comb. Theory, Ser. B.

[34]  Maria J. Serna,et al.  H-Colorings of Large Degree Graphs , 2002, EurAsia-ICT.

[35]  Maw-Shang Chang Weighted Domination on Cocomparability Graphs , 1995, ISAAC.

[36]  Maw-Shang Chang Weighted Domination of Cocomparability Graphs , 1997, Discret. Appl. Math..

[37]  Ehab S. Elmallah,et al.  Independence and domination in Polygon Graphs , 1993, Discret. Appl. Math..

[38]  Dieter Kratsch,et al.  On the restriction of some NP-complete graph problems to permutation graphs , 1985, FCT.

[39]  Wen-Lian Hsu,et al.  Linear Time Algorithms on Circular-Arc Graphs , 1991, Inf. Process. Lett..

[40]  Paul D. Seymour,et al.  Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.

[41]  Y. Daniel Liang,et al.  Dominations in Trapezoid Graphs , 1994, Inf. Process. Lett..

[42]  Maw-Shang Chang,et al.  Efficient Algorithms for the Domination Problems on Interval and Circular-Arc Graphs , 1992, SIAM J. Comput..

[43]  Jayme Luiz Szwarcfiter,et al.  Linear-Time Recognition of Helly Circular-Arc Models and Graphs , 2011, Algorithmica.

[44]  Mirka Miller,et al.  Generalized Domination in Chordal Graphs , 1995, Nord. J. Comput..