Characterizing the cancer genome in lung adenocarcinoma

[1]  E. Lander,et al.  Assessing the significance of chromosomal aberrations in cancer: Methodology and application to glioma , 2007, Proceedings of the National Academy of Sciences.

[2]  Christopher B. Miller,et al.  Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia , 2007, Nature.

[3]  Robert Gray,et al.  Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. , 2006, The New England journal of medicine.

[4]  J. Pollack,et al.  RNA interference‐based functional dissection of the 17q12 amplicon in breast cancer reveals contribution of coamplified genes , 2006, Genes, chromosomes & cancer.

[5]  J. Mesirov,et al.  GenePattern 2.0 , 2006, Nature Genetics.

[6]  F. Shepherd,et al.  Amplification of telomerase (hTERT) gene is a poor prognostic marker in non-small-cell lung cancer , 2006, British Journal of Cancer.

[7]  John M Maris,et al.  High-resolution analysis of chromosomal breakpoints and genomic instability identifies PTPRD as a candidate tumor suppressor gene in neuroblastoma. , 2006, Cancer research.

[8]  S. Lam,et al.  High resolution analysis of non‐small cell lung cancer cell lines by whole genome tiling path array CGH , 2006, International journal of cancer.

[9]  J. Minna,et al.  Identification of chromosome arm 9p as the most frequent target of homozygous deletions in lung cancer , 2005, Genes, chromosomes & cancer.

[10]  T. Golub,et al.  Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma , 2005, Nature.

[11]  L. Chin,et al.  High-resolution genomic profiles of human lung cancer. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[12]  M. Meyerson,et al.  Homozygous deletions and chromosome amplifications in human lung carcinomas revealed by single nucleotide polymorphism array analysis. , 2005, Cancer research.

[13]  E. Birney,et al.  A survey of homozygous deletions in human cancer genomes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  G. Livera,et al.  Phosphodiesterase 4D Forms a cAMP Diffusion Barrier at the Apical Membrane of the Airway Epithelium* , 2005, Journal of Biological Chemistry.

[15]  S. Knuutila,et al.  CDK4 is a probable target gene in a novel amplicon at 12q13.3–q14.1 in lung cancer , 2005, Genes, chromosomes & cancer.

[16]  Emmanuel Barillot,et al.  Analysis of array CGH data: from signal ratio to gain and loss of DNA regions , 2004, Bioinform..

[17]  Matthew Meyerson,et al.  Somatic alterations in the human cancer genome. , 2004, Cancer cell.

[18]  Andrew D. Yates,et al.  Athletics: Momentous sprint at the 2156 Olympics? , 2004, Nature.

[19]  R. Wilson,et al.  EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  L. Feuk,et al.  Detection of large-scale variation in the human genome , 2004, Nature Genetics.

[21]  Daniel A. Haber,et al.  Gefitinib-Sensitizing EGFR Mutations in Lung Cancer Activate Anti-Apoptotic Pathways , 2004, Science.

[22]  M. Stratton,et al.  The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website , 2004, British Journal of Cancer.

[23]  S. Gabriel,et al.  EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy , 2004, Science.

[24]  David M Jablons,et al.  Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[25]  W. Sellers,et al.  Overexpression, Amplification, and Androgen Regulation of TPD52 in Prostate Cancer , 2004, Cancer Research.

[26]  Cheng Li,et al.  dChipSNP: significance curve and clustering of SNP-array-based loss-of-heterozygosity data , 2004, Bioinform..

[27]  Patricia L. Harris,et al.  Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. , 2004, The New England journal of medicine.

[28]  Luc Girard,et al.  An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. , 2004, Cancer research.

[29]  T. Hubbard,et al.  A census of human cancer genes , 2004, Nature Reviews Cancer.

[30]  M. Shapero,et al.  High-resolution analysis of DNA copy number using oligonucleotide microarrays. , 2004, Genome research.

[31]  C. Sawyers,et al.  Targeted cancer therapy , 2004, Nature.

[32]  Ajay N. Jain,et al.  Genome-wide-array-based comparative genomic hybridization reveals genetic homogeneity and frequent copy number increases encompassing CCNE1 in Fallopian tube carcinoma , 2003, Oncogene.

[33]  A. Read,et al.  The presence of multiple regions of homozygous deletion at the CSMD1 locus in oral squamous cell carcinoma question the role of CSMD1 in head and neck carcinogenesis , 2003, Genes, chromosomes & cancer.

[34]  Terence P. Speed,et al.  A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..

[35]  J. Testa,et al.  Chromosomal imbalances in human lung cancer , 2002, Oncogene.

[36]  David Sidransky,et al.  Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. , 2002, Cancer research.

[37]  S. Henikoff,et al.  Accounting for human polymorphisms predicted to affect protein function. , 2002, Genome research.

[38]  John C Rockett,et al.  Arrays of DNA-binding sites , 2001, Genome Biology.

[39]  Cheng Li,et al.  Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application , 2001, Genome Biology.

[40]  S. Henikoff,et al.  Predicting deleterious amino acid substitutions. , 2001, Genome research.

[41]  M. Tsao,et al.  Molecular cytogenetic analysis of non-small cell lung carcinoma by spectral karyotyping and comparative genomic hybridization. , 2001, Cancer genetics and cytogenetics.

[42]  C. Li,et al.  Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[43]  A. Zetterberg,et al.  Frequent amplification of the telomerase reverse transcriptase gene in human tumors. , 2000, Cancer research.

[44]  Eric S. Lander,et al.  Loss-of-heterozygosity analysis of small-cell lung carcinomas using single-nucleotide polymorphism arrays , 2000, Nature Biotechnology.

[45]  Z. Ikezawa,et al.  MAPK Upstream Kinase (MUK)-binding Inhibitory Protein, a Negative Regulator of MUK/Dual Leucine Zipper-bearing Kinase/Leucine Zipper Protein Kinase* , 2000, The Journal of Biological Chemistry.

[46]  M. Meyerson,et al.  Recurrent allelic deletions of chromosome arms 15q and 16q in human small cell lung carcinomas , 2000, Genes, chromosomes & cancer.

[47]  P. Minoo,et al.  Inhibition of distal lung morphogenesis in Nkx2.1(−/−) embryos , 2000, Developmental dynamics : an official publication of the American Association of Anatomists.

[48]  S Rozen,et al.  Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.

[49]  Ash A. Alizadeh,et al.  Genome-wide analysis of DNA copy number variation in breast cancer using DNA microarrays , 1999, Nature Genetics.

[50]  Ash A. Alizadeh,et al.  Genome-wide analysis of DNA copy-number changes using cDNA microarrays , 1999, Nature Genetics.

[51]  R. Figlin,et al.  Amplification and overexpression of the cyclin D1 and epidermal growth factor receptor genes in non-small-cell lung cancer , 1999, Journal of Cancer Research and Clinical Oncology.

[52]  W. Kuo,et al.  High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays , 1998, Nature Genetics.

[53]  David I. Smith,et al.  PTEN/MMAC1 mutations identified in small cell, but not in non-small cell lung cancers , 1998, Oncogene.

[54]  A. Sakurada,et al.  The H-cadherin (CDH13) gene is inactivated in human lung cancer , 1998, Human Genetics.

[55]  J. Yokota,et al.  Inactivation of the PTEN/MMAC1/TEP1 gene in human lung cancers , 1998, Genes, chromosomes & cancer.

[56]  S. Knuutila,et al.  DNA gains in 3q occur frequently in squamous cell carcinoma of the lung, but not in adenocarcinoma , 1998, Genes, chromosomes & cancer.

[57]  S. Knuutila,et al.  Comparison of DNA copy number changes in malignant mesothelioma, adenocarcinoma and large-cell anaplastic carcinoma of the lung. , 1998, British Journal of Cancer.

[58]  C. Bingle,et al.  Thyroid transcription factor-1. , 1997, The international journal of biochemistry & cell biology.

[59]  Luigi Naldini,et al.  Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo , 1997, Nature Biotechnology.

[60]  D. Nickerson,et al.  PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. , 1997, Nucleic acids research.

[61]  S. Petersen,et al.  Patterns of chromosomal imbalances in adenocarcinoma and squamous cell carcinoma of the lung. , 1997, Cancer research.

[62]  S. Manoir,et al.  Comparative genomic hybridization analysis detects frequent, often high-level, overrepresentation of DNA sequences at 3q, 5p, 7p, and 8q in human non-small cell lung carcinomas. , 1997, Cancer research.

[63]  S. Hirohashi,et al.  Deletion of three distinct regions on chromosome 13q in human non‐small‐cell lung cancer , 1997, International journal of cancer.

[64]  I. Petersen,et al.  Small-cell lung cancer is characterized by a high incidence of deletions on chromosomes 3p, 4q, 5q, 10q, 13q and 17p. , 1997, British Journal of Cancer.

[65]  F. Gage,et al.  In Vivo Gene Delivery and Stable Transduction of Nondividing Cells by a Lentiviral Vector , 1996, Science.

[66]  W. Ryder,et al.  Prognostic significance of CCND1 (cyclin D1) overexpression in primary resected non-small-cell lung cancer. , 1996, British Journal of Cancer.

[67]  J. Minna,et al.  NCI‐navy medical oncology branch cell line data base , 1996, Journal of cellular biochemistry. Supplement.

[68]  J. Pouysségur,et al.  Cytoplasmic Domain of the Ubiquitous Na+/H+ Exchanger NHE1 Can Confer Ca2+ Responsiveness to the Apical Isoform NHE3 (*) , 1995, The Journal of Biological Chemistry.

[69]  J. Herman,et al.  Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. , 1995, Cancer research.

[70]  J. Herman,et al.  5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers , 1995, Nature Medicine.

[71]  A. Marchetti,et al.  mdm2 gene amplification and overexpression in non-small cell lung carcinomas with accumulation of the p53 protein in the absence of p53 gene mutations. , 1995, Diagnostic molecular pathology : the American journal of surgical pathology, part B.

[72]  J. Whitsett,et al.  Gene Structure and Expression of Human Thyroid Transcription Factor-1 in Respiratory Epithelial Cells (*) , 1995, The Journal of Biological Chemistry.

[73]  J. Siegfried,et al.  Cytogenetic analysis of 63 non‐small cell lung carcinomas: Recurrent chromosome alterations amid frequent and widespread genomic upheaval , 1994, Genes, chromosomes & cancer.

[74]  M. Ogawa,et al.  Somatic mutations of the MTS (multiple tumor suppressor) 1/CDK4l (cyclin-dependent kinase-4 inhibitor) gene in human primary non-small cell lung carcinomas. , 1994, Biochemical and biophysical research communications.

[75]  Peter A. Jones,et al.  P16 gene in uncultured tumours , 1994, Nature.

[76]  D. Sidransky,et al.  Rates of p16 (MTS1) mutations in primary tumors with 9p loss. , 1994, Science.

[77]  D. Carson,et al.  Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers , 1994, Nature.

[78]  M. Skolnick,et al.  A cell cycle regulator potentially involved in genesis of many tumor types. , 1994, Science.

[79]  K. Keyomarsi,et al.  Redundant cyclin overexpression and gene amplification in breast cancer cells. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[80]  J. Testa,et al.  Molecular implications of recurrent cytogenetic alterations in human small cell lung cancer. , 1993, Cancer detection and prevention.

[81]  D. George,et al.  Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. , 1991, The EMBO journal.

[82]  A. Okamoto,et al.  Variable mutations of the RB gene in small-cell lung carcinoma. , 1990, Oncogene.

[83]  R. Figlin,et al.  Frequent amplification of the bcl-1 locus in poorly differentiated squamous cell carcinoma of the lung. The Lung Cancer Study Group. , 1990, Oncogene.

[84]  M. Noguchi,et al.  Amplification of protooncogenes in surgical specimens of human lung carcinomas. , 1989, Cancer research.

[85]  J. Minna,et al.  p53: a frequent target for genetic abnormalities in lung cancer. , 1989, Science.

[86]  S. Rodenhuis,et al.  Mutational activation of the K-ras oncogene. A possible pathogenetic factor in adenocarcinoma of the lung. , 1987, The New England journal of medicine.

[87]  M. Barbacid,et al.  ras gene Amplification and malignant transformation , 1985, Molecular and cellular biology.

[88]  C. Harris,et al.  Intermediate filament and cross-linked envelope expression in human lung tumor cell lines. , 1985, Cancer research.

[89]  J. Minna,et al.  Amplification and expression of the c-myc oncogene in human lung cancer cell lines , 1983, Nature.