A split least-squares characteristic mixed element method for nonlinear nonstationary convection–diffusion problem

In this paper, a split least-squares characteristic mixed finite element method is proposed for solving nonlinear nonstationary convection–diffusion problem. By selecting the least-squares functional property, the resulting least-squares procedure can be split into two independent symmetric positive definite sub-schemes. The first sub-scheme is for the unknown variable u, which is the same as the standard characteristic Galerkin finite element approximation. The second sub-scheme is for the unknown flux σ. Theoretical analysis shows that the method yields the approximate solutions with optimal accuracy in L 2(Ω) norm for the primal unknown and in H(div; Ω) norm for the unknown flux, respectively. Some numerical examples are given to confirm our theory results.

[1]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[2]  M. Chipot Finite Element Methods for Elliptic Problems , 2000 .

[3]  Sang Dong Kim,et al.  Split least-squares finite element methods for linear and nonlinear parabolic problems , 2009 .

[4]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[5]  Dan-ping Yang,et al.  Some least-squares Galerkin procedures for first-order time-dependent convection–diffusion system , 1999 .

[6]  R. B. Kellogg,et al.  Least Squares Methods for Elliptic Systems , 1985 .

[7]  Pavel B. Bochev,et al.  Least-squares methods for the velocity-pressure-stress formulation of the Stokes equations , 1995 .

[8]  T. Manteuffel,et al.  FIRST-ORDER SYSTEM LEAST SQUARES FOR SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS : PART II , 1994 .

[9]  Tsu-Fen Chen,et al.  Semidiscrete least squares methods for linear convection-diffusion problem , 1992 .

[10]  Dan-Ping Yang,et al.  Analysis of least-squares mixed finite element methods for nonlinear nonstationary convection-diffusion problems , 2000, Math. Comput..

[11]  Tsu-Fen Chen,et al.  Semidiscrete least squares methods for linear hyperbolic systems , 1992 .

[12]  G. Carey,et al.  Least-squares mixed finite elements for second-order elliptic problems , 1994 .

[13]  Sang Dong Kim,et al.  A remark on least-squares mixed element methods for reaction-diffusion problems , 2007 .

[14]  Suh-Yuh Yang,et al.  A least-squares finite element method for incompressible flow in stress-velocity-pressure version☆ , 1995 .

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  G. F. Carey,et al.  Least-Squares Mixed Finite Element Methods for Non-Selfadjoint Elliptic Problems: II. Performance of Block-ILU Factorization Methods , 1995, SIAM J. Sci. Comput..

[17]  Max Gunzburger,et al.  A subdomain Galerkin/Least squares method for first-order elliptic systems in the plane , 1990 .

[18]  Li Q. Tang,et al.  A least‐squares finite element method for time‐dependent incompressible flows with thermal convection , 1993 .

[19]  T. F. Russell,et al.  NUMERICAL METHODS FOR CONVECTION-DOMINATED DIFFUSION PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE ELEMENT OR FINITE DIFFERENCE PROCEDURES* , 1982 .

[20]  C. L. Chang,et al.  A least-squares finite element method for the Helmholtz equation , 1990 .

[21]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[22]  M. Fortin,et al.  E cient rectangular mixed fi-nite elements in two and three space variables , 1987 .

[23]  Ching L. Chang,et al.  An error estimate of the least squares finite element method for the Stokes problem in three dimensions , 1994 .

[24]  Danping Yang,et al.  Quasi-least-squares finite element method for steady flow and heat transfer with system rotation , 2006, Numerische Mathematik.

[25]  G. F. Carey,et al.  Error estimates for least-squares mixed finite elements , 1994 .

[26]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[27]  Yang,et al.  LEAST-SQUARES MIXED FINITE ELEMENT METHODS FOR NONLINEAR PARABOLIC PROBLEMS , 2002 .

[28]  M. Fortin,et al.  Mixed finite elements for second order elliptic problems in three variables , 1987 .