Flexible Bayesian quantile regression for independent and clustered data.

Quantile regression has emerged as a useful supplement to ordinary mean regression. Traditional frequentist quantile regression makes very minimal assumptions on the form of the error distribution and thus is able to accommodate nonnormal errors, which are common in many applications. However, inference for these models is challenging, particularly for clustered or censored data. A Bayesian approach enables exact inference and is well suited to incorporate clustered, missing, or censored data. In this paper, we propose a flexible Bayesian quantile regression model. We assume that the error distribution is an infinite mixture of Gaussian densities subject to a stochastic constraint that enables inference on the quantile of interest. This method outperforms the traditional frequentist method under a wide array of simulated data models. We extend the proposed approach to analyze clustered data. Here, we differentiate between and develop conditional and marginal models for clustered data. We apply our methods to analyze a multipatient apnea duration data set.

[1]  A. Kottas,et al.  Bayesian Semiparametric Modelling in Quantile Regression , 2009 .

[2]  Mendel Fygenson,et al.  INFERENCE FOR CENSORED QUANTILE REGRESSION MODELS IN LONGITUDINAL STUDIES , 2009, 0904.0080.

[3]  Xuming He,et al.  Three-step estimation in linear mixed models with skew-t distributions , 2008 .

[4]  A. Kottas,et al.  A Nonparametric Model-based Approach to Inference for Quantile Regression , 2008 .

[5]  G. Roberts,et al.  Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models , 2007, 0710.4228.

[6]  Brian J. Reich,et al.  A MULTIVARIATE SEMIPARAMETRIC BAYESIAN SPATIAL MODELING FRAMEWORK FOR HURRICANE SURFACE WIND FIELDS , 2007, 0709.0427.

[7]  Vijay Nair,et al.  Advances in statistical modeling and inference : essays in honor of Kjell A. Doksum , 2007 .

[8]  N. Hjort,et al.  NONPARAMETRIC QUANTILE INFERENCE USING DIRICHLET PROCESSES , 2006 .

[9]  M. Bottai,et al.  Quantile regression for longitudinal data using the asymmetric Laplace distribution. , 2007, Biostatistics.

[10]  M. Krnjajic,et al.  Bayesian Nonparametric Modeling in Quantile Regression , 2007 .

[11]  J. E. Griffin,et al.  Order-Based Dependent Dirichlet Processes , 2006 .

[12]  Hui-xia,et al.  Detecting Differential Expressions in GeneChip Microarray Studies: A Quantile Approach , 2006 .

[13]  N. Hjort,et al.  NONPARAMETRIC QUANTILE INFERENCE USING DIRICHLET PROCESSES , 2006 .

[14]  T. Lancaster,et al.  Bayesian Quantile Regression , 2005 .

[15]  S. MacEachern,et al.  Bayesian Nonparametric Spatial Modeling With Dirichlet Process Mixing , 2005 .

[16]  Ling Xu,et al.  On choosing the centering distribution in Dirichlet process mixture models , 2005 .

[17]  Xuming He,et al.  Practical Confidence Intervals for Regression Quantiles , 2005 .

[18]  Jianwen Cai,et al.  Quantile Regression Models with Multivariate Failure Time Data , 2005, Biometrics.

[19]  R. Koenker Quantile Regression: Name Index , 2005 .

[20]  Xuming He,et al.  Bolus location associated with videofluoroscopic and respirodeglutometric events. , 2005, Journal of speech, language, and hearing research : JSLHR.

[21]  R. Koenker Quantile regression for longitudinal data , 2004 .

[22]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[23]  Peter Green,et al.  Highly Structured Stochastic Systems , 2003 .

[24]  Luisa Scaccia,et al.  Bayesian Growth Curves Using Normal Mixtures With Nonparametric Weights , 2003 .

[25]  Peter D. Hoff,et al.  Nonparametric estimation of convex models via mixtures , 2003 .

[26]  W. Johnson,et al.  Modeling Regression Error With a Mixture of Polya Trees , 2002 .

[27]  A. Gelfand,et al.  Bayesian Semiparametric Median Regression Modeling , 2001 .

[28]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[29]  B. Mallick,et al.  A Bayesian Semiparametric Accelerated Failure Time Model , 1999, Biometrics.

[30]  Xuming He Quantile Curves without Crossing , 1997 .

[31]  S. Lipsitz,et al.  Quantile Regression Methods for Longitudinal Data with Drop‐outs: Application to CD4 Cell Counts of Patients Infected with the Human Immunodeficiency Virus , 1997 .

[32]  Sin-Ho Jung Quasi-Likelihood for Median Regression Models , 1996 .

[33]  T. Ferguson Prior Distributions on Spaces of Probability Measures , 1974 .

[34]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .