Small peptides as modular catalysts for the direct asymmetric aldol reaction: ancient peptides with aldolase enzyme activity.

Simple peptides and their analogues having a primary amino group as the catalytic residue mediate the direct asymmetric intermolecular aldol reaction with high stereoselectivity and furnish the corresponding aldol products with up to 99% ee; this intrinsic ability of highly modular peptides may explain the initial molecular evolution of aldolase enzymes.

[1]  S. Ley,et al.  Organocatalysis with proline derivatives: improved catalysts for the asymmetric Mannich, nitro-Michael and aldol reactions. , 2005, Organic & biomolecular chemistry.

[2]  A. Córdova,et al.  Amino acid catalyzed neogenesis of carbohydrates: a plausible ancient transformation. , 2005, Chemistry.

[3]  A. Córdova,et al.  Acyclic amino acid-catalyzed direct asymmetric aldol reactions: alanine, the simplest stereoselective organocatalyst. , 2005, Chemical communications.

[4]  A. Córdova,et al.  Amino acid catalyzed direct enantioselective formation of carbohydrates : one-step de novo synthesis of ketoses , 2005 .

[5]  A. Córdova,et al.  Plausible origins of homochirality in the amino acid catalyzed neogenesis of carbohydrates. , 2005, Chemical communications.

[6]  H. Wennemers,et al.  Increased structural complexity leads to higher activity: peptides as efficient and versatile catalysts for asymmetric aldol reactions. , 2005, Organic letters.

[7]  D. Enders,et al.  Direct organocatalytic de novo synthesis of carbohydrates. , 2005, Angewandte Chemie.

[8]  E. Koonin,et al.  A universal trend of amino acid gain and loss in protein evolution , 2005, Nature.

[9]  L. Orgel,et al.  Carbonyl Sulfide-Mediated Prebiotic Formation of Peptides , 2004, Science.

[10]  P. Dalko,et al.  In the golden age of organocatalysis. , 2004, Angewandte Chemie.

[11]  J. Lex,et al.  Proline-Derived N-Sulfonylcarboxamides: Readily Available, Highly Enantioselective and Versatile Catalysts for Direct Aldol Reactions , 2004 .

[12]  J. Reymond,et al.  Zinc-proline catalyzed pathway for the formation of sugars. , 2004, Chemical communications.

[13]  P. Arvidsson,et al.  Rational design of asymmetric organocatalysts-increased reactivity and solvent scope with a tetrazolic acid , 2004 .

[14]  L. Gong,et al.  Small peptides catalyze highly enantioselective direct aldol reactions of aldehydes with hydroxyacetone: unprecedented regiocontrol in aqueous media. , 2004, Organic letters.

[15]  K. Ishihara,et al.  Asymmetric direct aldol reaction assisted by water and a proline-derived tetrazole catalyst. , 2004, Angewandte Chemie.

[16]  Scott J. Miller In search of peptide-based catalysts for asymmetric organic synthesis. , 2004, Accounts of chemical research.

[17]  S. Pizzarello,et al.  Prebiotic Amino Acids as Asymmetric Catalysts , 2004, Science.

[18]  Claudio Palomo,et al.  Current progress in the asymmetric aldol addition reaction. , 2004, Chemical Society reviews.

[19]  J. Reymond,et al.  Discovery of new peptide-based catalysts for the direct asymmetric aldol reaction. , 2003, Bioorganic & medicinal chemistry letters.

[20]  Davidr . Evans,et al.  Ni(II) bis(oxazoline)-catalyzed enantioselective syn aldol reactions of N-propionylthiazolidinethiones in the presence of silyl triflates. , 2003, Journal of the American Chemical Society.

[21]  B. List,et al.  Direct catalytic asymmetric enolexo aldolizations. , 2003, Angewandte Chemie.

[22]  A. Berkessel The discovery of catalytically active peptides through combinatorial chemistry. , 2003, Current opinion in chemical biology.

[23]  F. Jiang,et al.  Novel small organic molecules for a highly enantioselective direct aldol reaction. , 2003, Journal of the American Chemical Society.

[24]  S. Matsunaga,et al.  Direct catalytic asymmetric Michael reaction of hydroxyketones: asymmetric Zn catalysis with a Et2Zn/linked-BINOL complex. , 2003, Journal of the American Chemical Society.

[25]  K N Houk,et al.  Kinetic and stereochemical evidence for the involvement of only one proline molecule in the transition states of proline-catalyzed intra- and intermolecular aldol reactions. , 2003, Journal of the American Chemical Society.

[26]  C. Barbas,et al.  Direct organocatalytic aldol reactions in buffered aqueous media. , 2002, Chemical communications.

[27]  Hisashi Yamamoto,et al.  Diversity-based strategy for discovery of environmentally benign organocatalyst: diamine-protonic acid catalysts for asymmetric direct aldol reaction , 2002 .

[28]  B. List Proline-catalyzed asymmetric reactions , 2002 .

[29]  D. MacMillan,et al.  The first direct and enantioselective cross-aldol reaction of aldehydes. , 2002, Journal of the American Chemical Society.

[30]  Scott J. Miller,et al.  Amino Acids and Peptides as Asymmetric Organocatalysts , 2002 .

[31]  N. Kumaragurubaran,et al.  Direct catalytic asymmetric aldol reactions of aldehydes. , 2002, Chemical communications.

[32]  C. Barbas,et al.  Proline-catalyzed one-step asymmetric synthesis of 5-hydroxy-(2E)-hexenal from acetaldehyde. , 2002, The Journal of organic chemistry.

[33]  C. Barbas,et al.  Amino acid catalyzed direct asymmetric aldol reactions: a bioorganic approach to catalytic asymmetric carbon-carbon bond-forming reactions. , 2001, Journal of the American Chemical Society.

[34]  B. Trost,et al.  Asymmetric Aldol Reaction via a Dinuclear Zinc Catalyst: α-Hydroxyketones as Donors , 2001 .

[35]  B List,et al.  Proline-catalyzed asymmetric aldol reactions between ketones and alpha-unsubstituted aldehydes. , 2001, Organic letters.

[36]  R. Sheldon,et al.  A four-step enzymatic cascade for the one-pot synthesis of non-natural carbohydrates from glycerol. , 2000, The Journal of organic chemistry.

[37]  S. Denmark,et al.  The Chemistry of Trichlorosilyl Enolates. Aldol Addition Reactions of Methyl Ketones , 2000 .

[38]  B. List,et al.  Catalytic Asymmetric Synthesis of anti-1,2-Diols , 2000 .

[39]  Shuj Kobayashi,et al.  Highly anti-Selective Catalytic Asymmetric Aldol Reactions , 2000 .

[40]  Wong,et al.  The Catalytic Asymmetric Aldol Reaction. , 2000, Angewandte Chemie.

[41]  Richard A. Lerner,et al.  Proline-Catalyzed Direct Asymmetric Aldol Reactions , 2000 .

[42]  J. S. Johnson,et al.  Chiral bis(oxazoline) copper(II) complexes: versatile catalysts for enantioselective cycloaddition, Aldol, Michael, and carbonyl ene reactions. , 2000, Accounts of chemical research.

[43]  K. Jørgensen,et al.  Catalytic asymmetric homo-aldol reaction of pyruvate—a chiral Lewis acid catalyst that mimics aldolase enzymes , 2000 .

[44]  Yoichi M. A. Yamada,et al.  Direct Catalytic Asymmetric Aldol Reaction , 1999 .

[45]  Eric N. Jacobsen,et al.  Comprehensive asymmetric catalysis , 1999 .

[46]  Yoichi M. A. Yamada,et al.  Direct Catalytic Asymmetric Aldol Reactions of Aldehydes with Unmodified Ketones , 1997 .

[47]  S. Pizzarello,et al.  Enantiomeric Excesses in Meteoritic Amino Acids , 1997, Science.

[48]  Chi-Huey Wong,et al.  Recent Advances in the Chemoenzymatic Synthesis of Carbohydrates and Carbohydrate Mimetics. , 1996, Chemical reviews.

[49]  E. Carreira,et al.  Catalytic, Enantioselective Aldol Additions with Methyl and Ethyl Acetate O-Silyl Enolates: A Chiral Tridentate Chelate as a Ligand for Titanium(IV) , 1994 .

[50]  D. R. Parrish,et al.  Asymmetric synthesis of bicyclic intermediates of natural product chemistry , 1974 .

[51]  G. Sauer,et al.  New Type of Asymmetric Cyclization to Optically Active Steroid CD Partial Structures , 1971 .