Dotted interval graphs

We introduce a generalization of interval graphs, which we call Dotted Interval Graphs (DIG). A dotted interval graph is an intersection graph of arithmetic progressions (dotted intervals). Coloring of dotted interval graphs naturally arises in the context of high throughput genotyping. We study the properties of dotted interval graphs, with a focus on coloring. We show that any graph is a DIG, but that <i>DIG<sub>d</sub></i> graphs, that is, DIGs in which the arithmetic progressions have a jump of at most <i>d</i>, form a strict hierarchy. We show that coloring <i>DIG<sub>d</sub></i> graphs is NP-complete even for <i>d</i> = 2. For any fixed <i>d</i>, we provide a 5/6<i>d</i> + <i>o</i>(<i>d</i>) approximation for the coloring of <i>DIG<sub>d</sub></i> graphs. Finally, we show that finding the maximal clique in <i>DIG<sub>d</sub></i> graphs is fixed parameter tractable in <i>d</i>.

[1]  Frank Harary,et al.  On double and multiple interval graphs , 1979, J. Graph Theory.

[2]  Gary L. Miller,et al.  The Complexity of Coloring Circular Arcs and Chords , 1980, SIAM J. Algebraic Discret. Methods.

[3]  David B. Shmoys,et al.  Recognizing graphs with fixed interval number is NP-complete , 1984, Discret. Appl. Math..

[4]  András Gyárfás,et al.  On the chromatic number of multiple interval graphs and overlap graphs , 1985, Discret. Math..

[5]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[6]  F. McMorris,et al.  Topics in Intersection Graph Theory , 1987 .

[7]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[8]  D. West Multitrack Interval Graphs , 1995 .

[9]  P. Deloukas,et al.  A Gene Map of the Human Genome , 1996, Science.

[10]  M. Ekker,et al.  A microsatellite genetic linkage map for zebrafish (Danio rerio) , 1998, Nature Genetics.

[11]  Hans Söderlund,et al.  Assigning probes into a small number of pools separable by electrophoresis , 2002, ISMB.

[12]  L. Zane,et al.  Strategies for microsatellite isolation: a review , 2002, Molecular ecology.

[13]  Reuven Bar-Yehuda,et al.  Scheduling split intervals , 2002, SODA '02.

[14]  W. Hsu,et al.  AN APPROXIMATION ALGORITHM FOR COLORING CIRCULAR-ARC GRAPHS , 2003 .

[15]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[16]  Yonatan Aumann,et al.  Designing optimally multiplexed SNP genotyping assays , 2003, J. Comput. Syst. Sci..

[17]  Moshe Lewenstein,et al.  Dotted interval graphs and high throughput genotyping , 2005, SODA '05.

[18]  Minghui Jiang Approximating minimum coloring and maximum independent set in dotted interval graphs , 2006, Inf. Process. Lett..

[19]  Moshe Lewenstein,et al.  Optimization problems in multiple-interval graphs , 2007, SODA '07.

[20]  Vladimir Yanovski Approximation algorithm for coloring of dotted interval graphs , 2008, Inf. Process. Lett..