CHARMM‐GUI Membrane Builder toward realistic biological membrane simulations

CHARMM‐GUI Membrane Builder, http://www.charmm‐gui.org/input/membrane, is a web‐based user interface designed to interactively build all‐atom protein/membrane or membrane‐only systems for molecular dynamics simulations through an automated optimized process. In this work, we describe the new features and major improvements in Membrane Builder that allow users to robustly build realistic biological membrane systems, including (1) addition of new lipid types, such as phosphoinositides, cardiolipin (CL), sphingolipids, bacterial lipids, and ergosterol, yielding more than 180 lipid types, (2) enhanced building procedure for lipid packing around protein, (3) reliable algorithm to detect lipid tail penetration to ring structures and protein surface, (4) distance‐based algorithm for faster initial ion displacement, (5) CHARMM inputs for P21 image transformation, and (6) NAMD equilibration and production inputs. The robustness of these new features is illustrated by building and simulating a membrane model of the polar and septal regions of E. coli membrane, which contains five lipid types: CL lipids with two types of acyl chains and phosphatidylethanolamine lipids with three types of acyl chains. It is our hope that CHARMM‐GUI Membrane Builder becomes a useful tool for simulation studies to better understand the structure and dynamics of proteins and lipids in realistic biological membrane environments. © 2014 Wiley Periodicals, Inc.

[1]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[2]  K. Schulten,et al.  Computational studies of membrane channels. , 2004, Structure.

[3]  Bernard R Brooks,et al.  Probing the periplasmic-open state of lactose permease in response to sugar binding and proton translocation. , 2010, Journal of molecular biology.

[4]  T. Kaneda,et al.  Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. , 1991, Microbiological reviews.

[5]  H. Jarrell,et al.  The role of cyclopropane moieties in the lipid properties of biological membranes: a deuterium NMR structural and dynamical approach , 1984 .

[6]  William Dowhan,et al.  Visualization of Phospholipid Domains inEscherichia coli by Using the Cardiolipin-Specific Fluorescent Dye 10-N-Nonyl Acridine Orange , 2000, Journal of bacteriology.

[7]  Maarten G. Wolf,et al.  g_membed: Efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation , 2010, J. Comput. Chem..

[8]  Jeffery B. Klauda,et al.  Membrane models of E. coli containing cyclic moieties in the aliphatic lipid chain. , 2012, Biochimica et biophysica acta.

[9]  Eric Jakobsson,et al.  Sphingomyelin-cholesterol domains in phospholipid membranes: atomistic simulation. , 2004, Biophysical journal.

[10]  David S. Perlin,et al.  Requirement for Ergosterol in V-ATPase Function Underlies Antifungal Activity of Azole Drugs , 2010, PLoS pathogens.

[11]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[12]  T. Kuhl,et al.  Electrostatic interactions between model mitochondrial membranes. , 2005, Colloids and surfaces. B, Biointerfaces.

[13]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1994, ACM Trans. Graph..

[14]  R. Lester,et al.  Metabolism and selected functions of sphingolipids in the yeast Saccharomyces cerevisiae. , 1999, Biochimica et biophysica acta.

[15]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[16]  José Mario Martínez,et al.  PACKMOL: A package for building initial configurations for molecular dynamics simulations , 2009, J. Comput. Chem..

[17]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[18]  Alexander D. MacKerell,et al.  Additive empirical force field for hexopyranose monosaccharides , 2008, J. Comput. Chem..

[19]  Pietro De Camilli,et al.  Phosphoinositides in cell regulation and membrane dynamics , 2006, Nature.

[20]  Sunhwan Jo,et al.  NMR-based simulation studies of Pf1 coat protein in explicit membranes. , 2013, Biophysical journal.

[21]  Anton Arkhipov,et al.  Architecture and Membrane Interactions of the EGF Receptor , 2013, Cell.

[22]  Wonpil Im,et al.  Preferred orientations of phosphoinositides in bilayers and their implications in protein recognition mechanisms. , 2014, The journal of physical chemistry. B.

[23]  T. Kutateladze,et al.  Translation of the phosphoinositide code by PI effectors. , 2010, Nature chemical biology.

[24]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[25]  Taehoon Kim,et al.  CHARMM‐GUI: A web‐based graphical user interface for CHARMM , 2008, J. Comput. Chem..

[26]  Sergio Grinstein,et al.  Precursor or Charge Supplier? , 2012, Science.

[27]  F. L. Hoch Cardiolipins and biomembrane function. , 1992, Biochimica et biophysica acta.

[28]  Sunhwan Jo,et al.  Molecular dynamics and NMR spectroscopy studies of E. coli lipopolysaccharide structure and dynamics. , 2013, Biophysical journal.

[29]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[30]  Byeongdu Lee,et al.  Erratum: Structure, dynamics, and power conversion efficiency correlations in a new low bandgap polymer: PCBM solar cell (The Journal of Physical Chemistry B) , 2010 .

[31]  Jens Krüger,et al.  CELLmicrocosmos 2.2 MembraneEditor: A Modular Interactive Shape-Based Software Approach To Solve Heterogeneous Membrane Packing Problems , 2011, J. Chem. Inf. Model..

[32]  Benoît Roux,et al.  Molecular dynamics simulations of the influenza hemagglutinin fusion peptide in micelles and bilayers: conformational analysis of peptide and lipids. , 2005, Journal of molecular biology.

[33]  J. Cronan,et al.  Cyclopropane ring formation in membrane lipids of bacteria , 1997, Microbiology and molecular biology reviews : MMBR.

[34]  Andrei L. Lomize,et al.  OPM: Orientations of Proteins in Membranes database , 2006, Bioinform..

[35]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[36]  Bert L. de Groot,et al.  Acyl chain order parameter profiles in phospholipid bilayers: computation from molecular dynamics simulations and comparison with 2H NMR experiments , 2007, European Biophysics Journal.

[37]  Ziqiang Guan,et al.  Cardiolipin and the osmotic stress responses of bacteria. , 2009, Biochimica et biophysica acta.

[38]  Jeffery B. Klauda,et al.  CHARMM-GUI Membrane Builder for mixed bilayers and its application to yeast membranes. , 2009, Biophysical journal.

[39]  M R Jones,et al.  Structural details of an interaction between cardiolipin and an integral membrane protein. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[40]  M. Klein,et al.  Constant pressure molecular dynamics algorithms , 1994 .

[41]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[42]  M. Del Poeta,et al.  Role of Sphingolipids in Microbial Pathogenesis , 2006, Infection and Immunity.

[43]  Jeffery B. Klauda,et al.  Lipid chain branching at the iso- and anteiso-positions in complex Chlamydia membranes: a molecular dynamics study. , 2011, Biochimica et biophysica acta.

[44]  Sébastien Dupont,et al.  ERGOSTEROL BIOSYNTHESIS: A FUNGAL PATHWAY FOR LIFE ON LAND? , 2012, Evolution; international journal of organic evolution.

[45]  S. Arnold,et al.  Cell respiration is controlled by ATP, an allosteric inhibitor of cytochrome-c oxidase. , 1997, European journal of biochemistry.

[46]  Alexander D. MacKerell,et al.  CHARMM additive all-atom force field for aldopentofuranoses, methyl-aldopentofuranosides, and fructofuranose. , 2009, The journal of physical chemistry. B.

[47]  Gunnar von Heijne,et al.  A Day in the Life of Dr K. or How I Learned to Stop Worrying and Love Lysozyme: a tragedy in six acts. , 1999 .

[48]  Alexander D. MacKerell,et al.  CHARMM Additive All-Atom Force Field for Glycosidic Linkages between Hexopyranoses. , 2009, Journal of chemical theory and computation.

[49]  S. Nosé,et al.  A study of solid and liquid carbon tetrafluoride using the constant pressure molecular dynamics technique , 1983 .

[50]  Wonpil Im,et al.  Probing the U-shaped conformation of caveolin-1 in a bilayer. , 2014, Biophysical journal.

[51]  Christophe Chipot,et al.  Insight into the Properties of Cardiolipin Containing Bilayers from Molecular Dynamics Simulations, Using a Hybrid All-Atom/United-Atom Force Field. , 2012, Journal of chemical theory and computation.

[52]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[53]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[54]  Bernard R Brooks,et al.  Simulations of membranes and other interfacial systems using P2(1) and Pc periodic boundary conditions. , 2002, Biophysical journal.

[55]  Feng Chen,et al.  ST‐analyzer: A web‐based user interface for simulation trajectory analysis , 2014, J. Comput. Chem..

[56]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[57]  Bernard R. Brooks,et al.  New spherical‐cutoff methods for long‐range forces in macromolecular simulation , 1994, J. Comput. Chem..

[58]  Mark S. P. Sansom,et al.  Finding a Needle in a Haystack: The Role of Electrostatics in Target Lipid Recognition by PH Domains , 2012, PLoS Comput. Biol..

[59]  Itzhak Fishov,et al.  Visualization of membrane domains in Escherichia coli , 1999, Molecular microbiology.

[60]  Y. Hannun,et al.  Ceramide in the eukaryotic stress response. , 2000, Trends in cell biology.

[61]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[62]  P. Majerus,et al.  Phosphatidylinositol signalling reactions. , 1998, Seminars in cell & developmental biology.

[63]  W. Im,et al.  Automated Builder and Database of Protein/Membrane Complexes for Molecular Dynamics Simulations , 2007, PloS one.

[64]  Ilpo Vattulainen,et al.  Mitochondrial membranes with mono- and divalent salt: changes induced by salt ions on structure and dynamics. , 2009, The journal of physical chemistry. B.