Concepts of Connectivity and Human Epileptic Activity

This review attempts to place the concept of connectivity from increasingly sophisticated neuroimaging data analysis methodologies within the field of epilepsy research. We introduce the more principled connectivity terminology developed recently in neuroimaging and review some of the key concepts related to the characterization of propagation of epileptic activity using what may be called traditional correlation-based studies based on EEG. We then show how essentially similar methodologies, and more recently models addressing causality, have been used to characterize whole-brain and regional networks using functional MRI data. Following a discussion of our current understanding of the neuronal system aspects of the onset and propagation of epileptic discharges and seizures, we discuss the most advanced and ambitious framework to attempt to fully characterize epileptic networks based on neuroimaging data.

[1]  D. O. Walter,et al.  Spectral analysis for electroencephalograms: mathematical determination of neurophysiological relationships from records of limited duration. , 1963, Experimental neurology.

[2]  C. A. Marsan,et al.  CORTICAL CELLULAR PHENOMENA IN EXPERIMENTAL EPILEPSY: INTERICTAL MANIFESTATIONS. , 1964, Experimental neurology.

[3]  D. Prince,et al.  Control mechanisms in cortical epileptogenic foci. "Surround" inhibition. , 1967, Archives of neurology.

[4]  C. A. Marsan,et al.  Factors Related to the Occurrence of Typical Paroxysmal Abnormalities in the EEG Records of Epileptic Patients , 1970, Epilepsia.

[5]  M. Brazier Spread of seizure discharges in epilepsy: anatomical and electrophysiological considerations. , 1972, Experimental neurology.

[6]  J. Gotman Measurement of small time differences between EEG channels: method and application to epileptic seizure propagation. , 1983, Electroencephalography and clinical neurophysiology.

[7]  D. Tauck,et al.  Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  U. Heinemann,et al.  Ionic changes and alterations in the size of the extracellular space during epileptic activity. , 1986, Advances in neurology.

[9]  F. L. D. Silva,et al.  Localization of epileptogenic foci using a new signal analytical approach , 1990, Neurophysiologie Clinique/Clinical Neurophysiology.

[10]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[11]  S. Smith,et al.  Measurement of interhemispheric time differences in generalised spike-and-wave. , 1992, Electroencephalography and clinical neurophysiology.

[12]  A. Obenaus,et al.  Loss of glutamate decarboxylase mRNA-containing neurons in the rat dentate gyrus following pilocarpine-induced seizures , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  R. P. Gregory,et al.  Electroencephalogram epileptiform abnormalities in candidates for aircrew training. , 1993, Electroencephalography and clinical neurophysiology.

[14]  J. Jefferys,et al.  Nonsynaptic modulation of neuronal activity in the brain: electric currents and extracellular ions. , 1995, Physiological reviews.

[15]  C. Büchel,et al.  Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. , 1997, Cerebral cortex.

[16]  M. Avoli,et al.  CA3-Driven Hippocampal-Entorhinal Loop Controls Rather than Sustains In Vitro Limbic Seizures , 1997, The Journal of Neuroscience.

[17]  J. Martinerie,et al.  Nonlinear interdependencies of EEG signals in human intracranially recorded temporal lobe seizures , 1998, Brain Research.

[18]  I. Módy,et al.  Properties of single NMDA receptor channels in human dentate gyrus granule cells. , 1999, The Journal of physiology.

[19]  R. Leahy,et al.  EEG and MEG: forward solutions for inverse methods , 1999, IEEE Transactions on Biomedical Engineering.

[20]  Charles L. Wilson,et al.  Hippocampal and Entorhinal Cortex High‐Frequency Oscillations (100–500 Hz) in Human Epileptic Brain and in Kainic Acid‐Treated Rats with Chronic Seizures , 1999, Epilepsia.

[21]  F. Woermann,et al.  Abnormal cerebral structure in juvenile myoclonic epilepsy demonstrated with voxel-based analysis of MRI. , 1999, Brain : a journal of neurology.

[22]  R. Quiroga,et al.  Learning driver-response relationships from synchronization patterns. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[24]  Mingzhou Ding,et al.  Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance , 2001, Biological Cybernetics.

[25]  Y. Ben-Ari,et al.  Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy , 2001, Nature Neuroscience.

[26]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[27]  J. Bellanger,et al.  Interpretation of interdependencies in epileptic signals using a macroscopic physiological model of the EEG , 2001, Clinical Neurophysiology.

[28]  J. Bellanger,et al.  Neural networks involving the medial temporal structures in temporal lobe epilepsy , 2001, Clinical Neurophysiology.

[29]  D. McCormick,et al.  On the cellular and network bases of epileptic seizures. , 2001, Annual review of physiology.

[30]  Fiona E. N. LeBeau,et al.  A Possible Role for Gap Junctions in Generation of Very Fast EEG Oscillations Preceding the Onset of, and Perhaps Initiating, Seizures , 2001 .

[31]  M. Curtis,et al.  Interictal spikes in focal epileptogenesis , 2001, Progress in Neurobiology.

[32]  Helen J. Cross,et al.  A Possible Role for Gap Junctions in Generation of Very Fast EEG Oscillations Preceding the Onset of, and Perhaps Initiating, Seizures , 2001, Epilepsia.

[33]  K. Lehnertz,et al.  Seizure prediction and the preseizure period , 2002, Current opinion in neurology.

[34]  R. Miles,et al.  On the Origin of Interictal Activity in Human Temporal Lobe Epilepsy in Vitro , 2002, Science.

[35]  F. H. Lopes da Silva,et al.  Cortical Focus Drives Widespread Corticothalamic Networks during Spontaneous Absence Seizures in Rats , 2002, The Journal of Neuroscience.

[36]  Jian Jhen Chen,et al.  Upregulation of a T-Type Ca2+ Channel Causes a Long-Lasting Modification of Neuronal Firing Mode after Status Epilepticus , 2002, The Journal of Neuroscience.

[37]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[38]  Karl J. Friston,et al.  Multivariate Autoregressive Modelling of fMRI time series , 2003 .

[39]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[40]  Barry Horwitz,et al.  The elusive concept of brain connectivity , 2003, NeuroImage.

[41]  S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields , 1977, Biological Cybernetics.

[42]  Karl J. Friston,et al.  Comparing dynamic causal models , 2004, NeuroImage.

[43]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[44]  O. Steinlein Genetic mechanisms that underlie epilepsy , 2004, Nature Reviews Neuroscience.

[45]  D. Johnston,et al.  Seizure-Induced Plasticity of h Channels in Entorhinal Cortical Layer III Pyramidal Neurons , 2004, Neuron.

[46]  D. Johnston,et al.  Acquired Dendritic Channelopathy in Temporal Lobe Epilepsy , 2004, Science.

[47]  Piotr J. Franaszczuk,et al.  Application of the Directed Transfer Function Method to Mesial and Lateral Onset Temporal Lobe Seizures , 2004, Brain Topography.

[48]  Katarzyna J. Blinowska,et al.  A new method of the description of the information flow in the brain structures , 1991, Biological Cybernetics.

[49]  Karl J. Friston,et al.  Biophysical models of fMRI responses , 2004, Current Opinion in Neurobiology.

[50]  B. Connors,et al.  Initiation, Propagation, and Termination of Epileptiform Activity in Rodent Neocortex In Vitro Involve Distinct Mechanisms , 2005, The Journal of Neuroscience.

[51]  Eric Halgren,et al.  Dynamic Statistical Parametric Mapping for Analyzing the Magnetoencephalographic Epileptiform Activity in Patients With Epilepsy , 2004, Journal of child neurology.

[52]  T. Takano,et al.  An astrocytic basis of epilepsy , 2005, Nature Medicine.

[53]  J. Gotman,et al.  Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[54]  J. Bellanger,et al.  A method to identify reproducible subsets of co-activated structures during interictal spikes. Application to intracerebral EEG in temporal lobe epilepsy , 2005, Clinical Neurophysiology.

[55]  Rainer Goebel,et al.  Mapping directed influence over the brain using Granger causality and fMRI , 2005, NeuroImage.

[56]  J. Ebersole,et al.  Intracranial EEG Substrates of Scalp EEG Interictal Spikes , 2005, Epilepsia.

[57]  E. Halgren,et al.  Application of Magnetoencephalography in Epilepsy Patients with Widespread Spike or Slow‐wave Activity , 2005, Epilepsia.

[58]  G. Jackson,et al.  Functional connectivity networks are disrupted in left temporal lobe epilepsy , 2006, Annals of neurology.

[59]  Diego Clonda,et al.  Bayesian spatio-temporal approach for EEG source reconstruction: conciliating ECD and distributed models , 2006, IEEE Transactions on Biomedical Engineering.

[60]  B. Porter,et al.  Status epilepticus differentially alters AMPA and kainate receptor subunit expression in mature and immature dentate granule neurons , 2006, The European journal of neuroscience.

[61]  J. C. Jimenez,et al.  Nonlinear local electrovascular coupling. I: A theoretical model , 2006, Human brain mapping.

[62]  Brendon O. Watson,et al.  Modular Propagation of Epileptiform Activity: Evidence for an Inhibitory Veto in Neocortex , 2006, The Journal of Neuroscience.

[63]  Karl J. Friston,et al.  EEG–fMRI of idiopathic and secondarily generalized epilepsies , 2006, NeuroImage.

[64]  N. Logothetis,et al.  Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1 , 2006, Nature Neuroscience.

[65]  T. Takano,et al.  Astrocyte-mediated control of cerebral blood flow , 2006, Nature Neuroscience.

[66]  J. Régis,et al.  The role of corticothalamic coupling in human temporal lobe epilepsy. , 2006, Brain : a journal of neurology.

[67]  J. Palva,et al.  Epileptogenic neocortical networks are revealed by abnormal temporal dynamics in seizure-free subdural EEG. , 2007, Cerebral cortex.

[68]  Karl J. Friston,et al.  Variational free energy and the Laplace approximation , 2007, NeuroImage.

[69]  Carson C. Chow,et al.  Stochastic Dynamics of a Finite-Size Spiking Neural Network , 2007, Neural Computation.

[70]  J. Ebersole,et al.  Cortical Substrates of Scalp EEG Epileptiform Discharges , 2007, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[71]  L. Lemieux,et al.  Combined EEG-fMRI and tractography to visualise propagation of epileptic activity , 2007, Journal of Neurology, Neurosurgery, and Psychiatry.

[72]  R. Yuste,et al.  Feedforward Inhibition Contributes to the Control of Epileptiform Propagation Speed , 2007, The Journal of Neuroscience.

[73]  M. Walker,et al.  Hippocampus and human disease , 2007 .

[74]  Olivier David,et al.  Dynamic causal models and autopoietic systems. , 2007, Biological research.

[75]  J. Ebersole,et al.  The Impact of Cerebral Source Area and Synchrony on Recording Scalp Electroencephalography Ictal Patterns , 2007, Epilepsia.

[76]  C. Iadecola,et al.  Glial regulation of the cerebral microvasculature , 2007, Nature Neuroscience.

[77]  G. Buzsáki,et al.  Inhibition and Brain Work , 2007, Neuron.

[78]  F. Mormann,et al.  Seizure prediction: the long and winding road. , 2007, Brain : a journal of neurology.

[79]  A. Kleinschmidt,et al.  Temporal lobe interictal epileptic discharges affect cerebral activity in “default mode” brain regions , 2006, Human brain mapping.

[80]  R. Yuste,et al.  The Source of Afterdischarge Activity in Neocortical Tonic–Clonic Epilepsy , 2007, The Journal of Neuroscience.

[81]  John S Ebersole,et al.  Clinical Application of Dipole Models in the Localization of Epileptiform Activity , 2007, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[82]  Karl J. Friston,et al.  Nonlinear Dynamic Causal Models for Fmri Nonlinear Dynamic Causal Models for Fmri Nonlinear Dynamic Causal Models for Fmri , 2022 .

[83]  J. Régis,et al.  Enhanced EEG functional connectivity in mesial temporal lobe epilepsy , 2008, Epilepsy Research.

[84]  C. Segebarth,et al.  Identifying Neural Drivers with Functional MRI: An Electrophysiological Validation , 2008, PLoS biology.

[85]  F. Wendling Computational models of epileptic activity: a bridge between observation and pathophysiological interpretation , 2008, Expert review of neurotherapeutics.

[86]  Lotfi Senhadji,et al.  Spatial analysis of intracerebral electroencephalographic signals in the time and frequency domain: identification of epileptogenic networks in partial epilepsy , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[87]  Nelson J. Trujillo-Barreto,et al.  Biophysical model for integrating neuronal activity, EEG, fMRI and metabolism , 2008, NeuroImage.

[88]  N. Logothetis What we can do and what we cannot do with fMRI , 2008, Nature.

[89]  Fahmeed Hyder,et al.  The micro-architecture of the cerebral cortex: Functional neuroimaging models and metabolism , 2008, NeuroImage.

[90]  F. Bartolomei,et al.  Imaging structural and functional connectivity: towards a unified definition of human brain organization? , 2008, Current opinion in neurology.

[91]  J. R. Hughes Progress in predicting seizure episodes with nonlinear methods , 2008, Epilepsy & Behavior.

[92]  Karl J. Friston,et al.  DEM: A variational treatment of dynamic systems , 2008, NeuroImage.

[93]  R. Morgan,et al.  Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures , 2008, Proceedings of the National Academy of Sciences.

[94]  Karl J. Friston,et al.  The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields , 2008, PLoS Comput. Biol..

[95]  V. Solo,et al.  Dynamic Granger–Geweke causality modeling with application to interictal spike propagation , 2009, Human brain mapping.

[96]  C. Schroeder,et al.  Spatial characterization of interictal high frequency oscillations in epileptic neocortex , 2009, Brain : a journal of neurology.

[97]  Frédérique Amor,et al.  Cortical local and long-range synchronization interplay in human absence seizure initiation , 2009, NeuroImage.

[98]  R. Traub,et al.  A nonsynaptic mechanism underlying interictal discharges in human epileptic neocortex , 2009, Proceedings of the National Academy of Sciences.

[99]  A. Trevelyan The Direct Relationship between Inhibitory Currents and Local Field Potentials , 2009, The Journal of Neuroscience.

[100]  J. Gotman,et al.  High frequency oscillations in intracranial EEGs mark epileptogenicity rather than lesion type. , 2009, Brain : a journal of neurology.

[101]  Karl J. Friston,et al.  EEG–fMRI Information Fusion: Biophysics and Data Analysis , 2009 .

[102]  Karl J. Friston,et al.  Causal Hierarchy within the Thalamo-Cortical Network in Spike and Wave Discharges , 2009, PloS one.

[103]  Karl J. Friston Causal Modelling and Brain Connectivity in Functional Magnetic Resonance Imaging , 2009, PLoS biology.

[104]  P. Chauvel,et al.  Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms , 2009, Human brain mapping.

[105]  J. Schoffelen,et al.  Source connectivity analysis with MEG and EEG , 2009, Human brain mapping.

[106]  Karl J. Friston,et al.  Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models , 2009, Physica D. Nonlinear phenomena.

[107]  B. Bourgeois,et al.  Dynamic statistical parametric mapping for analyzing ictal magnetoencephalographic spikes in patients with intractable frontal lobe epilepsy , 2009, Epilepsy Research.

[108]  L. Senhadji,et al.  From EEG signals to brain connectivity: A model-based evaluation of interdependence measures , 2009, Journal of Neuroscience Methods.

[109]  Karl J. Friston,et al.  Dynamic causal modelling of distributed electromagnetic responses , 2009, NeuroImage.

[110]  Karl J. Friston,et al.  Comparing Families of Dynamic Causal Models , 2010, PLoS Comput. Biol..

[111]  I. Scheffer,et al.  The core network in absence epilepsy , 2010, Neurology.

[112]  C. Stam,et al.  ‘Functional Connectivity’ Is a Sensitive Predictor of Epilepsy Diagnosis after the First Seizure , 2010, PloS one.

[113]  Fabrice Bartolomei,et al.  Graph theoretical analysis of structural and functional connectivity MRI in normal and pathological brain networks , 2010, Magnetic Resonance Materials in Physics, Biology and Medicine.

[114]  P. Chauvel,et al.  Role of resting state functional connectivity MRI in presurgical investigation of mesial temporal lobe epilepsy , 2010, Journal of Neurology, Neurosurgery & Psychiatry.

[115]  Karl J. Friston,et al.  EEG-fMRI integration: a critical review of biophysical modeling and data analysis approaches. , 2010, Journal of integrative neuroscience.

[116]  Klaas E. Stephan,et al.  Dynamic causal modelling: A critical review of the biophysical and statistical foundations , 2011, NeuroImage.

[117]  Louis Lemieux,et al.  Simultaneous intracranial EEG and fMRI of interictal epileptic discharges in humans , 2011, NeuroImage.

[118]  D. Long Networks of the Brain , 2011 .

[119]  Karl J. Friston,et al.  Network discovery with DCM , 2011, NeuroImage.