Evaluation of multilevel sequentially semiseparable preconditioners on computational fluid dynamics benchmark problems using Incompressible Flow and Iterative Solver Software

This paper studies a new preconditioning technique for sparse systems arising from discretized partial differential equations in computational fluid dynamics problems. This preconditioning technique exploits the multilevel sequentially semiseparable (MSSS) structure of the system matrix. MSSS matrix computations give a data‐sparse way to approximate the LU factorization of a sparse matrix from discretized partial differential equations in linear computational complexity with respect to the problem size. In contrast to the standard block diagonal and block upper‐triangular preconditioners, we exploit the global MSSS structure of the 2×2 block system from the discretized Stokes equation and linearized Navier‐Stokes equation. This avoids approximating the Schur complement explicitly, which is a big advantage over standard block preconditioners. Through numerical experiments on standard computational fluid dynamics benchmark problems in Incompressible Flow and Iterative Solver Software, we show the performance of the MSSS preconditioners. They indicate that the global MSSS preconditioner not only yields mesh size independent convergence but also gives viscosity parameter and Reynolds number independent convergence. Compared with the algebraic multigrid (AMG) method and the geometric multigrid (GMG) method for block preconditioners, the MSSS preconditioning technique is more robust than both the AMG method and GMG method, and considerably faster than the AMG method. Copyright © 2015 John Wiley & Sons, Ltd.

[1]  Michel Verhaegen,et al.  On the application of a novel model order reduction algorithm for sequentially semi-separable matrices to the identification of one-dimensional distributed systems , 2014, 2014 European Control Conference (ECC).

[2]  Michel Verhaegen,et al.  Efficient Preconditioners for PDE-Constrained Optimization Problems with a Multi-level Sequentially Semi-Separable Matrix Structure , 2014 .

[3]  M. Gijzen,et al.  Evaluation of Multilevel Sequentially Semiseparable Preconditioners on CFD Benchmark Problems Using IFISS , 2013 .

[4]  M. Gijzen,et al.  A class of efficient preconditioners with multilevel sequentially semiseparable matrix structure , 2013 .

[5]  Artem Napov,et al.  Conditioning Analysis of Incomplete Cholesky Factorizations with Orthogonal Dropping , 2013, SIAM J. Matrix Anal. Appl..

[6]  Jianlin Xia,et al.  Efficient Structured Multifrontal Factorization for General Large Sparse Matrices , 2013, SIAM J. Sci. Comput..

[7]  Jianlin Xia,et al.  A robust inner–outer hierarchically semi‐separable preconditioner , 2012, Numer. Linear Algebra Appl..

[8]  S. Börm,et al.  ℋ︁‐LU factorization in preconditioners for augmented Lagrangian and grad‐div stabilized saddle point systems , 2012 .

[9]  Jacek Gondzio,et al.  Multilevel quasiseparable matrices in PDE-constrained optimization , 2011, 1112.6018.

[10]  Martin B. van Gijzen,et al.  Algorithm 913: An elegant IDR(s) variant that efficiently exploits biorthogonality properties , 2011, TOMS.

[11]  Andrew J. Wathen,et al.  Preconditioning Iterative Methods for the Optimal Control of the Stokes Equations , 2011, SIAM J. Sci. Comput..

[12]  M. Benzi,et al.  INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids (2010) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.2267 Modified augmented Lagrangian preconditioners for the incompressible Navier , 2022 .

[13]  Michel Verhaegen,et al.  Distributed Control in Multiple Dimensions: A Structure Preserving Computational Technique , 2011, IEEE Transactions on Automatic Control.

[14]  Justin K. Rice Efficient Algorithms for Distributed Control: A Structured Matrix Approach , 2010 .

[15]  T. J. Chung,et al.  Computational Fluid Dynamics: Contents , 2010 .

[16]  Jianlin Xia,et al.  Robust Approximate Cholesky Factorization of Rank-Structured Symmetric Positive Definite Matrices , 2010, SIAM J. Matrix Anal. Appl..

[17]  Shivkumar Chandrasekaran,et al.  On the Numerical Rank of the Off-Diagonal Blocks of Schur Complements of Discretized Elliptic PDEs , 2010, SIAM J. Matrix Anal. Appl..

[18]  R. Vandebril,et al.  Matrix Computations and Semiseparable Matrices: Linear Systems , 2010 .

[19]  Jianlin Xia,et al.  Superfast Multifrontal Method for Large Structured Linear Systems of Equations , 2009, SIAM J. Matrix Anal. Appl..

[20]  Martin B. van Gijzen,et al.  IDR(s): A Family of Simple and Fast Algorithms for Solving Large Nonsymmetric Systems of Linear Equations , 2008, SIAM J. Sci. Comput..

[21]  Mario Bebendorf,et al.  Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems , 2008 .

[22]  Maxim A. Olshanskii,et al.  Pressure Schur Complement Preconditioners for the Discrete Oseen Problem , 2007, SIAM J. Sci. Comput..

[23]  Mario Bebendorf,et al.  Why Finite Element Discretizations Can Be Factored by Triangular Hierarchical Matrices , 2007, SIAM J. Numer. Anal..

[24]  Howard C. Elman,et al.  Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow , 2007, TOMS.

[25]  Maxim A. Olshanskii,et al.  An Augmented Lagrangian-Based Approach to the Oseen Problem , 2006, SIAM J. Sci. Comput..

[26]  Shivkumar Chandrasekaran,et al.  A Fast Solver for HSS Representations via Sparse Matrices , 2006, SIAM J. Matrix Anal. Appl..

[27]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[28]  Sabine Le Borne,et al.  H-matrix Preconditioners in Convection-Dominated Problems , 2005, SIAM J. Matrix Anal. Appl..

[29]  I. Gohberg,et al.  On generators of quasiseparable finite block matrices , 2005 .

[30]  I. Gohberg,et al.  The QR iteration method for Hermitian quasiseparable matrices of an arbitrary order , 2005 .

[31]  Alle-Jan van der Veen,et al.  Some Fast Algorithms for Sequentially Semiseparable Representations , 2005, SIAM J. Matrix Anal. Appl..

[32]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[33]  S. Börm ℋ2-matrices – Multilevel methods for the approximation of integral operators , 2004 .

[34]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[35]  Alle-Jan van der Veen,et al.  Fast Stable Solver for Sequentially Semi-separable Linear Systems of Equations , 2002, HiPC.

[36]  Dario Fasino,et al.  Orthogonal rational functions and diagonal-plus-semiseparable matrices , 2002, SPIE Optics + Photonics.

[37]  Steffen Börm,et al.  Data-sparse Approximation by Adaptive ℋ2-Matrices , 2002, Computing.

[38]  I. Gohberg,et al.  A modification of the Dewilde-van der Veen method for inversion of finite structured matrices , 2002 .

[39]  Jun Zhang,et al.  Preconditioned Krylov subspace methods for solving nonsymmetric matrices from CFD applications , 2000 .

[40]  José M. F. Moura,et al.  Matrices with banded inverses: Inversion algorithms and factorization of Gauss-Markov processes , 2000, IEEE Trans. Inf. Theory.

[41]  I. Gohberg,et al.  On a new class of structured matrices , 1999 .

[42]  P. Dewilde,et al.  Time-Varying Systems and Computations , 1998 .

[43]  Israel Koltracht,et al.  Integral Equation Method for the Continuous Spectrum Radial Schrödinger Equation , 1997 .

[44]  Yuli Eidelman,et al.  Inversion formulas and linear complexity algorithm for diagonal plus semiseparable matrices , 1997 .

[45]  A. Wathen,et al.  Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .

[46]  Andrew J. Wathen,et al.  Fast iterative solution of stabilised Stokes systems, part I: using simple diagonal preconditioners , 1993 .

[47]  Leslie Greengard,et al.  On the Numerical Solution of Two-Point Boundary Value Problems , 1991 .

[48]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[49]  Patrick Dewilde,et al.  Model Reduction in Symbolically Semi-separable Systems with Application to Pre-conditioners for 3D Sparse Systems of Equations , 2009 .

[50]  S. Chandrasekaran,et al.  Algorithms to solve hierarchically semi-separable systems , 2007 .

[51]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[52]  G. Golub Matrix computations , 1983 .