Vertex isoperimetric parameter of a Computation Graph

Let G = (V,E) be a computation graph, which is a directed graph representing a straight line computation and S ⊂ V. We say a vertex v is an input vertex for S if there is an edge (v, u) such that v ∉ S and u ∈ S. We say a vertex u is an output vertex for S if there is an edge (u, v) such that u ∈ S and v ∉ S. A vertex is called a boundary vertex for a set S if it is either an input vertex or an output vertex for S. We consider the problem of determining the minimum value of boundary size of S over all sets of size M in an infinite directed grid. This problem is related to the vertex isoperimetric parameter of a graph, and is motivated by the need for deriving a lower bound for memory traffic for a computation graph representing a financial application. We first extend the notion of vertex isoperimetric parameter for undirected graphs to computation graphs, and then provide a complete solution for this problem for all M. In particular, we show that a set S of size M = 3k2 + 3k + 1 vertices of an infinite directed grid, the boundary size must be at least 6k + 3, and this is obtained when the vertices in S are arranged in a regular hexagonal shape with side k + 1.

[1]  Desh Ranjan,et al.  Strong I/O Lower Bounds for Binomial and FFT Computation Graphs , 2011, COCOON.

[2]  C. Thomborson,et al.  A Complexity Theory for VLSI , 1980 .

[3]  John E. Savage,et al.  Models of computation - exploring the power of computing , 1998 .

[4]  Ioannis T. Christou,et al.  Minimum-perimeter domain assignment , 1997, Math. Program..

[5]  S. Bezrukov Edge Isoperimetric Problems on Graphs , 2007 .

[6]  L. H. Harper Optimal Assignments of Numbers to Vertices , 1964 .

[7]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[8]  Da-Lun Wang,et al.  Discrete Isoperimetric Problems , 1977 .

[9]  Béla Bollobás,et al.  Edge-isoperimetric inequalities in the grid , 1991, Comb..

[10]  Rudolf Ahlswede,et al.  Edge isoperimetric theorems for integer point arrays , 1995 .

[11]  L. H. Harper Global Methods for Combinatorial Isoperimetric Problems , 2004 .

[12]  H. T. Kung,et al.  I/O complexity: The red-blue pebble game , 1981, STOC '81.

[13]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[14]  Gunnar Brinkmann,et al.  Pentagon-hexagon-patches with short boundaries , 2003, Eur. J. Comb..

[15]  David A. Patterson,et al.  Computer Architecture: A Quantitative Approach , 1969 .

[16]  Winston C. Yang Adding Layers to Bumped-Body Polyforms with Minimum Perimeter Preserves Minimum Perimeter , 2006, Electron. J. Comb..

[17]  Y. Kwok Mathematical models of financial derivatives , 2008 .

[18]  John E. Savage Extending the Hong-Kung Model to Memory Hierarchies , 1995, COCOON.

[19]  Alfred M. Bruckstein,et al.  On isoperimetrically optimal polyforms , 2008, Theor. Comput. Sci..

[20]  D. E. Daykin An Isoperimetric Problem on a Lattice , 1973 .

[21]  Ömer Egecioglu,et al.  The Isoperimetric Number of d-Dimensional k-Ary Arrays , 1999, Int. J. Found. Comput. Sci..

[22]  Oriol Serra,et al.  The vertex isoperimetric problem for the powers of the diamond graph , 2008, Discret. Math..