Vertex isoperimetric parameter of a Computation Graph
暂无分享,去创建一个
[1] Desh Ranjan,et al. Strong I/O Lower Bounds for Binomial and FFT Computation Graphs , 2011, COCOON.
[2] C. Thomborson,et al. A Complexity Theory for VLSI , 1980 .
[3] John E. Savage,et al. Models of computation - exploring the power of computing , 1998 .
[4] Ioannis T. Christou,et al. Minimum-perimeter domain assignment , 1997, Math. Program..
[5] S. Bezrukov. Edge Isoperimetric Problems on Graphs , 2007 .
[6] L. H. Harper. Optimal Assignments of Numbers to Vertices , 1964 .
[7] S. Ross,et al. Option pricing: A simplified approach☆ , 1979 .
[8] Da-Lun Wang,et al. Discrete Isoperimetric Problems , 1977 .
[9] Béla Bollobás,et al. Edge-isoperimetric inequalities in the grid , 1991, Comb..
[10] Rudolf Ahlswede,et al. Edge isoperimetric theorems for integer point arrays , 1995 .
[11] L. H. Harper. Global Methods for Combinatorial Isoperimetric Problems , 2004 .
[12] H. T. Kung,et al. I/O complexity: The red-blue pebble game , 1981, STOC '81.
[13] N. Linial,et al. Expander Graphs and their Applications , 2006 .
[14] Gunnar Brinkmann,et al. Pentagon-hexagon-patches with short boundaries , 2003, Eur. J. Comb..
[15] David A. Patterson,et al. Computer Architecture: A Quantitative Approach , 1969 .
[16] Winston C. Yang. Adding Layers to Bumped-Body Polyforms with Minimum Perimeter Preserves Minimum Perimeter , 2006, Electron. J. Comb..
[17] Y. Kwok. Mathematical models of financial derivatives , 2008 .
[18] John E. Savage. Extending the Hong-Kung Model to Memory Hierarchies , 1995, COCOON.
[19] Alfred M. Bruckstein,et al. On isoperimetrically optimal polyforms , 2008, Theor. Comput. Sci..
[20] D. E. Daykin. An Isoperimetric Problem on a Lattice , 1973 .
[21] Ömer Egecioglu,et al. The Isoperimetric Number of d-Dimensional k-Ary Arrays , 1999, Int. J. Found. Comput. Sci..
[22] Oriol Serra,et al. The vertex isoperimetric problem for the powers of the diamond graph , 2008, Discret. Math..