Ca channel gating during cardiac action potentials.
暂无分享,去创建一个
How do Ca channels conduct Ca ions during the cardiac action potential? We attempt to answer this question by applying a two-microelectrode technique, previously used for Na and K currents, in which we record the patch current and the action potential at the same time (Mazzanti, M., and L. J. DeFelice. 1987. Biophys. J. 12:95-100, and 1988. Biophys. J. 54:1139-1148; Wellis, D., L. J. DeFelice, and M. Mazzanti. 1990. Biophys. J. 57:41-48). In this paper, we also compare the action currents obtained by the technique with the step-protocol currents obtained during standard voltage-clamp experiments. Individual Ca channels were measured in 10 mM Ca/1 Ba and 10 mM Ba. To describe part of our results, we use the nomenclature introduced by Hess, P., J. B. Lansman, and R. W. Tsien (1984. Nature (Lond.). 311:538-544). With Ba as the charge carrier, Ca channel kinetics convert rapidly from long to short open times as the patch voltage changes from 20 to -20 mV. This voltage-dependent conversion occurs during action potentials and in step-protocol experiments. With Ca as the charge carrier, the currents are brief at all voltages, and it is difficult to define either the number of channels in the patch or the conductance of the individual channels. Occasionally, however, Ca-conducting channels spontaneously convert to long-open-time kinetics (in Hess et al., 1984, notation, mode 2). When this happens, which is about once in every 100beats, there usually appears to be only one channel in the patch. In this rare configuration, the channel is open long enough to measure its conductance in 10 Ca/ 1 Ba. The value is 8-10 pS, which is about half the conductance in Ba. Because the long openings occur so infrequently with Ca as the charge carrier, they contribute negligibly to the average Ca current at any particular time during an action potential. However, the total number of Ca ions entering during these long openings may be significant when compared to the number entering by the more usual kinetics.
[1] R. Tsien,et al. Calcium Channel Types in Cardiac Myocytes: Modulation by Dihydropyridines and β‐Adrenergic Stimulation , 1986, Journal of cardiovascular pharmacology.
[2] A. Brown,et al. The agonist effect of dihydropyridines on Ca channels , 1984, Nature.
[3] L. DeFelice,et al. Na channel kinetics during the spontaneous heart beat in embryonic chick ventricle cells. , 1987, Biophysical journal.