Coupling droplets/bubbles with a liquid film for enhancing phase-change heat transfer

[1]  X. Dai,et al.  Gradient Quasi‐Liquid Surface Enabled Self‐Propulsion of Highly Wetting Liquids , 2021, Advanced Functional Materials.

[2]  S. Sett,et al.  Recent developments, challenges, and pathways to stable dropwise condensation: A perspective , 2020 .

[3]  J. Rose Dropwise Condensation 2019 Max Jakob Memorial Award Paper , 2020 .

[4]  H. Gardeniers,et al.  Influence of Bubbles on the Energy Conversion Efficiency of Electrochemical Reactors , 2020, Joule.

[5]  J. Weibel,et al.  The role of vapor venting and liquid feeding on the dryout limit of two-layer evaporator wicks , 2020, International Journal of Heat and Mass Transfer.

[6]  M. McCarthy,et al.  Dewetting from Amphiphilic Minichannel Surfaces During Condensation. , 2020, ACS applied materials & interfaces.

[7]  S. Sett,et al.  Dropwise condensation on solid hydrophilic surfaces , 2020, Science Advances.

[8]  Gaohua Zhu,et al.  Ultrascalable Three-Tier Hierarchical Nanoengineered Surfaces for Optimized Boiling. , 2019, ACS nano.

[9]  Ming Yan,et al.  Enhancing Condensation Heat Transfer on Three-Dimensional Hybrid Surfaces , 2019, Joule.

[10]  Ronggui Yang,et al.  Falling-droplet-enhanced filmwise condensation in the presence of non-condensable gas , 2019, International Journal of Heat and Mass Transfer.

[11]  D. Cahill,et al.  Condensation Induced Delamination of Nanoscale Hydrophobic Films , 2019, Advanced Functional Materials.

[12]  Zhiguang Guo,et al.  Durable Lubricant Impregnated Surfaces for Water Collection under Extremely Severe Working Conditions. , 2019, ACS applied materials & interfaces.

[13]  Allison J. Mahvi,et al.  Stable Dropwise Condensation of Ethanol and Hexane on Rationally-Designed Ultra-Scalable Nanostructured Lubricant-Infused Surfaces. , 2019, Nano letters.

[14]  J. Weibel,et al.  Area-scalable high-heat-flux dissipation at low thermal resistance using a capillary-fed two-layer evaporator wick , 2019, International Journal of Heat and Mass Transfer.

[15]  J. Weibel,et al.  Experimental investigation of boiling regimes in a capillary-fed two-layer evaporator wick , 2019, International Journal of Heat and Mass Transfer.

[16]  Taylor A Farnham,et al.  Grafted Nanofilms Promote Dropwise Condensation of Low-Surface-Tension Fluids for High-Performance Heat Exchangers , 2019, Joule.

[17]  S. Kandlikar A New Perspective on Heat Transfer Mechanisms and Sonic Limit in Pool Boiling , 2019, Journal of Heat Transfer.

[18]  Zuankai Wang,et al.  Macrotextures-induced jumping relay of condensate droplets , 2019, Applied Physics Letters.

[19]  D. Beysens,et al.  Grooves Accelerate Dew Shedding. , 2019, Physical review letters.

[20]  Yung-Cheng Lee,et al.  Liquid-Vapor Phase-Change Heat Transfer on Functionalized Nanowired Surfaces and Beyond , 2018, Joule.

[21]  D. Antao,et al.  Capillary-Enhanced Filmwise Condensation in Porous Media. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[22]  Y. Lee,et al.  Sustaining enhanced condensation on hierarchical mesh-covered surfaces , 2018, National Science Review.

[23]  Y. Lee,et al.  Capillary-driven liquid film boiling heat transfer on hybrid mesh wicking structures , 2018, Nano Energy.

[24]  M. Asheghi,et al.  Enhanced Capillary‐Fed Boiling in Copper Inverse Opals via Template Sintering , 2018, Advanced Functional Materials.

[25]  J. Weibel,et al.  Enabling Highly Effective Boiling from Superhydrophobic Surfaces. , 2018, Physical review letters.

[26]  Renkun Chen,et al.  Ultrahigh Flux Thin Film Boiling Heat Transfer Through Nanoporous Membranes. , 2018, Nano letters.

[27]  Pralav P. Shetty,et al.  Thin Film Condensation on Nanostructured Surfaces , 2018 .

[28]  Jing Wang,et al.  Hydrophilic directional slippery rough surfaces for water harvesting , 2018, Science Advances.

[29]  Laura L. Becerra,et al.  Gravitationally Driven Wicking for Enhanced Condensation Heat Transfer. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[30]  D. J. Preston,et al.  Jumping Droplets Push the Boundaries of Condensation Heat Transfer , 2018 .

[31]  E. Wang,et al.  Nanoporous membrane device for ultra high heat flux thermal management , 2018, Microsystems & Nanoengineering.

[32]  Y. Lee,et al.  Three-Dimensional Superhydrophobic Nanowire Networks for Enhancing Condensation Heat Transfer , 2017 .

[33]  Ronggui Yang,et al.  Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation. , 2017, ACS applied materials & interfaces.

[34]  S. Singamaneni,et al.  Water from Wood: Pouring through Pores , 2017 .

[35]  Shanhui Fan,et al.  Thermal Photonics and Energy Applications , 2017 .

[36]  X. Gong,et al.  Recent Progress in Bionic Condensate Microdrop Self‐Propelling Surfaces , 2017, Advanced materials.

[37]  Weiqi Wang,et al.  Enhanced bubble nucleation and liquid rewetting for highly efficient boiling heat transfer on two-level hierarchical surfaces with patterned copper nanowire arrays , 2017 .

[38]  J. Boreyko,et al.  Hotspot cooling with jumping-drop vapor chambers , 2017 .

[39]  Ronggui Yang,et al.  Hydrophobic copper nanowires for enhancing condensation heat transfer , 2017 .

[40]  D. J. Preston,et al.  Nanoengineered materials for liquid–vapour phase-change heat transfer , 2017 .

[41]  E. Wang,et al.  Design of micropillar wicks for thin-film evaporation , 2016 .

[42]  W. Xu,et al.  Droplet Departure Characteristics and Dropwise Condensation Heat Transfer at Low Steam Pressure , 2016 .

[43]  S. Kandlikar,et al.  Pool boiling enhancement through bubble induced convective liquid flow in feeder microchannels , 2016 .

[44]  Kenneth E. Goodson,et al.  Approaching the limits of two-phase boiling heat transfer: High heat flux and low superheat , 2015 .

[45]  D. Lohse,et al.  Heat-flux enhancement by vapour-bubble nucleation in Rayleigh–Bénard turbulence , 2015, Journal of Fluid Mechanics.

[46]  Wei Xu,et al.  Droplet dynamics and heat transfer for dropwise condensation at lower and ultra-lower pressure , 2015 .

[47]  Jacopo Buongiorno,et al.  Critical heat flux maxima during boiling crisis on textured surfaces , 2015, Nature Communications.

[48]  D. L. Mafra,et al.  Scalable graphene coatings for enhanced condensation heat transfer. , 2015, Nano letters.

[49]  W. Xu,et al.  Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic–hydrophilic hybrid surfaces , 2015 .

[50]  Youmin Hou,et al.  Recurrent filmwise and dropwise condensation on a beetle mimetic surface. , 2015, ACS nano.

[51]  J. Aizenberg,et al.  Condensation on slippery asymmetric bumps , 2015, Nature.

[52]  R. Ganguly,et al.  Surface engineering for phase change heat transfer: A review , 2014, 1409.5363.

[53]  S. Garimella,et al.  Nano- and Microstructures for Thin-Film Evaporation—A Review , 2014 .

[54]  M. McCarthy,et al.  Materials, Fabrication, and Manufacturing of Micro/Nanostructured Surfaces for Phase-Change Heat Transfer Enhancement , 2014 .

[55]  K. Kim,et al.  Dropwise Condensation on Micro- and Nanostructured Surfaces , 2014 .

[56]  Evelyn N Wang,et al.  Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. , 2012, Nano letters.

[57]  A. Majumdar,et al.  Enhanced Heat Transfer in Biporous Wicks in the Thin Liquid Film Evaporation and Boiling Regimes , 2012 .

[58]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[59]  E. Wang,et al.  Structured surfaces for enhanced pool boiling heat transfer , 2012 .

[60]  J. Weibel,et al.  Visualization of vapor formation regimes during capillary-fed boiling in sintered-powder heat pipe wicks , 2012 .

[61]  Maneesh K. Gupta,et al.  Using amphiphilic nanostructures to enable long-range ensemble coalescence and surface rejuvenation in dropwise condensation. , 2012, ACS nano.

[62]  Evelyn N Wang,et al.  Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. , 2012, ACS nano.

[63]  Sindy K. Y. Tang,et al.  Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity , 2011, Nature.

[64]  M. Elimelech,et al.  The Future of Seawater Desalination: Energy, Technology, and the Environment , 2011, Science.

[65]  J Heikenfeld,et al.  Laplace barriers for electrowetting thresholding and virtual fluid confinement. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[66]  Suresh V. Garimella,et al.  Characterization of evaporation and boiling from sintered powder wicks fed by capillary action , 2010 .

[67]  J. Boreyko,et al.  Self-propelled dropwise condensate on superhydrophobic surfaces. , 2009, Physical review letters.

[68]  A. Majumdar,et al.  Nanowires for enhanced boiling heat transfer. , 2009, Nano letters.

[69]  N. Koratkar,et al.  Nanostructured copper interfaces for enhanced boiling. , 2008, Small.

[70]  J. W. Rose Enhanced Condensation Heat Transfer , 2006 .

[71]  David L. Allara,et al.  A perspective on surfaces and interfaces , 2005, Nature.

[72]  K. Goodson,et al.  Managing heat for electronics , 2005 .

[73]  J. Rose Dropwise condensation theory and experiment: A review , 2002 .

[74]  J. C. Chen,et al.  Fast drop movements resulting from the phase change on a gradient surface. , 2001, Science.

[75]  B. Wang,et al.  Advances in dropwise condensation heat transfer: Chinese research , 2000 .

[76]  Issam Mudawar,et al.  Assessment of high-heat-flux thermal management schemes , 2000, ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069).

[77]  P. J. Marto,et al.  The Use of Organic Coatings to Promote Dropwise Condensation of Steam , 1987 .

[78]  T. R. Rehm,et al.  Marangoni Flow: An Additional Mechanism in Boiling Heat Transfer , 1966, Science.

[79]  Jonathan Rose,et al.  Film and Dropwise Condensation , 2017 .

[80]  A. Yarin Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing ... , 2006 .

[81]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .