Femtosecond Laser Filamentation for Atmospheric Sensing

Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence spectra (fingerprints) from the excited fragments, which can be used for the identification of various substances including chemical and biological species. On the other hand, along with the femtosecond laser filamentation, white-light supercontinuum emission in the infrared to UV range is generated, which can be used as an ideal light source for absorption Lidar. In this paper, we present an overview of recent progress concerning remote sensing of the atmosphere using femtosecond laser filamentation.

[1]  Gadi Fibich,et al.  Multiple filamentation induced by input-beam ellipticity. , 2003, Optics letters.

[2]  Masayuki Fujita,et al.  Depolarization Light Detection and Ranging Using a White Light LIDAR System , 2006 .

[3]  Huailiang Xu,et al.  Explosive photodissociation of methane induced by ultrafast intense laser. , 2006, The Journal of chemical physics.

[4]  J. Daigle,et al.  Femtosecond laser-induced nonlinear spectroscopy for remote sensing of methane , 2006 .

[5]  H. R. Lange,et al.  High-Order Harmonic Generation and Quasiphase Matching in Xenon Using Self-Guided Femtosecond Pulses , 1998 .

[6]  V. P. Kandidov,et al.  A simple method to significantly increase filaments’ length and ionization density , 2009 .

[7]  S. Sharifi,et al.  Long-range spectrally and spatially resolved radiation from filaments in air , 2005 .

[8]  Olga G. Kosareva,et al.  The propagation of powerful femtosecond laser pulses in optical media : physics, applications, and new challenges , 2005 .

[9]  Miroslav Kolesik,et al.  Self-healing femtosecond light filaments. , 2004, Optics letters.

[10]  V. Tikhonchuk,et al.  Terahertz radiation source in air based on bifilamentation of femtosecond laser pulses. , 2007, Physical review letters.

[11]  R. Measures Laser remote sensing : fundamentals and applications , 1984 .

[12]  Jin Yu,et al.  Propagation of fs TW laser filaments in adverse atmospheric conditions , 2005 .

[13]  A. Becker,et al.  Background reservoir: its crucial role for long-distance propagation of femtosecond laser pulses in air , 2005 .

[14]  J. Wolf,et al.  Supercontinuum emission and enhanced self-guiding of infrared femtosecond filaments sustained by third-harmonic generation in air. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Kevin L. McNesby,et al.  Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants , 2005 .

[16]  Jin Yu,et al.  White-light filaments for multiparameter analysis of cloud microphysics , 2005 .

[17]  Jean-Pierre Wolf,et al.  Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime , 2006 .

[18]  V. P. Kandidov,et al.  Filamentation of high-power femtosecond laser radiation , 2009 .

[19]  G. Roy,et al.  A LIDAR technique to measure the filament length generated by a high-peak power femtosecond laser pulse in air , 2003 .

[20]  J. Daigle,et al.  Generation of powerful filaments at a long distance using adaptive optics , 2008 .

[21]  Redstone Arsenal,et al.  Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas , 2001 .

[22]  A. Bandrauk,et al.  Spectroscopy of the gases interacting with intense femtosecond laser pulses , 2001 .

[23]  F. Théberge,et al.  High energy THz generation from meter-long two-color filaments in air , 2010 .

[24]  Jin Yu,et al.  Towards a supercontinuum-based infrared lidar , 2003 .

[25]  Gaeta Catastrophic collapse of ultrashort pulses , 2000, Physical review letters.

[26]  G. Roy,et al.  Remote sensing with intense filaments enhanced by adaptive optics , 2009 .

[27]  G. Roy,et al.  Simultaneous detection and identification of multigas pollutants using filament-induced nonlinear spectroscopy , 2007 .

[28]  Olga G. Kosareva,et al.  Competition of multiple filaments during the propagation of intense femtosecond laser pulses , 2004 .

[29]  J. Marburger,et al.  Self-focusing: theory , 1975, International Quantum Electronics Conference, 2005..

[30]  See Leang Chin,et al.  Long-range third-harmonic generation in air using ultrashort intense laser pulses , 2005 .

[31]  Yong‐Ill Lee,et al.  Recent Applications of Laser‐Induced Breakdown Spectrometry: A Review of Material Approaches , 2004 .

[32]  Jin Yu,et al.  Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation☆ , 2005 .

[33]  F. Théberge,et al.  The influence of divergence on the filament length during the propagation of intense ultra-short laser pulses , 2006 .

[34]  M. Miki,et al.  Lidar measurement of constituents of microparticles in air by laser-induced breakdown spectroscopy using femtosecond terawatt laser pulses. , 2006, Optics letters.

[35]  Chang,et al.  Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities , 2000, Physical review letters.

[36]  A. Becker,et al.  Experiment and simulations on the energy reservoir effect in femtosecond light filaments. , 2005, Optics letters.

[37]  D. Boudreau,et al.  Sensing of halocarbons using femtosecond laser-induced fluorescence. , 2004, Analytical chemistry.

[38]  A. Becker,et al.  S-matrix analysis of non-resonant multiphoton ionisation of inner-valence electrons of the nitrogen molecule , 2001 .

[39]  Miroslav Kolesik,et al.  OPTICALLY TURBULENT FEMTOSECOND LIGHT GUIDE IN AIR , 1999 .

[40]  Masayuki Fujita,et al.  Three-Wavelength Backscatter Measurement of Clouds and Aerosols Using a White Light Lidar System , 2002 .

[41]  V. P. Kandidov,et al.  Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source , 2009 .

[42]  Demetrios Anglos,et al.  Ultraviolet laser filaments for remote laser-induced breakdown spectroscopy (LIBS) analysis: applications in cultural heritage monitoring. , 2006, Optics letters.

[43]  Jin Yu,et al.  Kilometer-range nonlinear propagation of femtosecond laser pulses. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  C. Bowden,et al.  White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air , 2001 .

[45]  See Leang Chin,et al.  Multi-constituents detection in contaminated aerosol clouds using remote-filament-induced breakdown spectroscopy , 2007 .

[46]  B. Stein,et al.  Remote sensing of the atmosphere using ultrashort laser pulses , 2000 .

[47]  S. Chin,et al.  Remote time-resolved filament-induced breakdown spectroscopy of biological materials. , 2006, Optics letters.

[48]  G. Roy,et al.  Understanding the advantage of remote femtosecond laser-induced breakdown spectroscopy of metallic targets , 2007 .

[49]  G. Roy,et al.  Controlling a bunch of multiple filaments by means of a beam diameter , 2006 .

[50]  See Leang Chin,et al.  Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample , 2007 .

[51]  Olga G. Kosareva,et al.  FILAMENTATION AND SUPERCONTINUUM GENERATION DURING THE PROPAGATION OF POWERFUL ULTRASHORT LASER PULSES IN OPTICAL MEDIA (WHITE LIGHT LASER) , 1999 .

[52]  E. Salmon,et al.  White-Light Filaments for Atmospheric Analysis , 2003, Science.

[53]  Jin Yu,et al.  UV–Supercontinuum generated by femtosecond pulse filamentation in air: Meter-range experiments versus numerical simulations , 2006 .

[54]  J. Wolf,et al.  Laser filaments generated and transmitted in highly turbulent air. , 2006, Optics letters.

[55]  V. Tikhonchuk,et al.  Conical forward THz emission from femtosecond-laser-beam filamentation in air. , 2007, Physical review letters.

[56]  A. Becker,et al.  Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses. , 2002, Physical review letters.

[57]  G. Roy,et al.  Remote filament-induced fluorescence spectroscopy from thin clouds of smoke , 2008 .

[58]  F. Théberge,et al.  Ultrabroadband continuum generated in air (down to 230 nm) using ultrashort and intense laser pulses , 2005 .

[59]  S. C. Hill,et al.  White-light nanosource with directional emission. , 2002, Physical review letters.

[60]  See Leang Chin,et al.  Femtosecond Laser Filamentation , 2009 .

[61]  S. Chin,et al.  Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air. , 2005, Optics express.

[62]  S. Michael Angel,et al.  Energy Dependence of Emission Intensity and Temperature in a LIBS Plasma Using Femtosecond Excitation , 2001 .

[63]  S. Chin,et al.  Neutral dissociation of superexcited oxygen molecules in intense laser fields. , 2010, The journal of physical chemistry. A.

[64]  F. Théberge,et al.  High energy terahertz emission from two-color laser-induced filamentation in air with pump pulse duration control , 2009 .

[65]  See Leang Chin,et al.  Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  Y. Shen,et al.  Spectral broadening of ultrashort pulses in a nonlinear medium. , 1984, Optics letters.

[67]  G. Roy,et al.  Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy , 2007 .

[68]  F. Théberge,et al.  Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy , 2006 .

[69]  F. Courvoisier,et al.  Ultraintense light filaments transmitted through clouds , 2003 .

[70]  M. Sigrist Air monitoring by spectroscopic techniques , 1994 .

[71]  S. Chin,et al.  The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air , 2009 .

[72]  E. Wright,et al.  Moving-focus versus self-waveguiding model for long-distance propagation of femtosecond pulses in air , 1999 .

[73]  Philippe Adam,et al.  Detection of bacteria by time-resolved laser-induced breakdown spectroscopy. , 2003, Applied optics.

[74]  S. Skupin,et al.  Ultrashort filaments of light in weakly ionized, optically transparent media , 2007 .

[75]  G. Méjean Propagation d'impulsions femtosecondes trawatts dans l'atmosphre et applications , 2005 .

[76]  Jin Yu,et al.  Long-distance remote laser-induced breakdown spectroscopy using filamentation in air , 2004 .

[77]  J. Diels,et al.  Remote sensing of explosives using infrared and ultraviolet filaments , 2008 .

[78]  S. Chin,et al.  Backward time-resolved spectroscopy from filament induced by ultrafast intense laser pulses , 2004 .

[79]  F. Théberge,et al.  Critical power for self-focussing of a femtosecond laser pulse in helium , 2008 .

[80]  Jean-Pierre Wolf,et al.  Physics and applications of atmospheric nonlinear optics and filamentation. , 2008, Optics express.

[81]  N. Akozbek,et al.  Tunable ultrashort laser pulses generated through filamentation in gases , 2006, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[82]  J. Wolf,et al.  Propagation of laser filaments through an extended turbulent region , 2007 .

[83]  See Leang Chin,et al.  Multi-parameter characterization of the longitudinal plasma profile of a filament: a comparative study , 2004 .

[84]  G. Roy,et al.  Long-range detection and length estimation of light filaments using extra-attenuation of terawatt femtosecond laser pulses propagating in air. , 2005, Applied optics.

[85]  J V Moloney,et al.  Dynamic spatial replenishment of femtosecond pulses propagating in air , 1998, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[86]  See Leang Chin,et al.  Remote sensing of trace methane using mobile femtosecond laser system of T&T Lab , 2009 .

[87]  Angular dependences of third harmonic generation from microdroplets , 1996, cond-mat/9610002.

[88]  G. Roy,et al.  Effect of beam diameter on the propagation of intense femtosecond laser pulses , 2005 .

[89]  F. Théberge,et al.  An efficient control of ultrashort laser filament location in air for the purpose of remote sensing , 2006 .

[90]  Gadi Fibich,et al.  Control of the collapse distance in atmospheric propagation. , 2006, Optics express.

[91]  Johnston,et al.  Electromagnetic Beam Breakup: Multiple Filaments, Single Beam Equilibria, and Radiation , 1996, Physical review letters.

[92]  A. Couairon,et al.  Femtosecond filamentation in transparent media , 2007 .

[93]  Jin Yu,et al.  Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system , 2004 .

[94]  A. Couairon,et al.  Organizing multiple femtosecond filaments in air. , 2004, Physical review letters.

[95]  J. Wolf,et al.  Measuring the electric charge in cloud droplets by use of second-harmonic generation. , 2005, Optics letters.

[96]  Harold I. Schiff,et al.  The use of tunable diode laser absorption spectroscopy for atmospheric measurements , 1994 .

[97]  F. Théberge,et al.  Ultrabroadband conical emission generated from the ultraviolet up to the far-infrared during the optical filamentation in air. , 2008, Optics letters.

[98]  Miroslav Kolesik,et al.  Simulation of third-harmonic and supercontinuum generation for femtosecond pulses in air , 2006 .

[99]  See Leang Chin,et al.  The critical laser intensity of self-guided light filaments in air , 2000 .

[100]  See Leang Chin,et al.  Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[101]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[102]  Olga G. Kosareva,et al.  Filamentation of femtosecond laser pulses in turbulent air , 2002 .

[103]  A. Couairon,et al.  Enhanced harmonic conversion efficiency in the self-guided propagation of femtosecond ultraviolet laser pulses in argon , 2005 .

[104]  Masayuki Fujita,et al.  Simultaneous three-wavelength depolarization measurements of clouds and aerosols using a coherent white light continuum , 2008 .

[105]  See Leang Chin,et al.  Ultrafast white-light continuum generation and self-focusing in transparent condensed media , 1999 .

[106]  Masayuki Fujita,et al.  Direct Absorption Spectroscopy of CO2 Using a Coherent White Light Continuum , 2010 .

[107]  A. Xia,et al.  Direct observation of super-excited states in methane created by a femtosecond intense laser field , 2008 .

[108]  Robert J Levis,et al.  Discrimination of composite graphite samples using remote filament-induced breakdown spectroscopy. , 2009, Analytical chemistry.

[109]  R Sauerbrey,et al.  Infrared extension of the super continuum generated by femtosecond terawatt laser pulses propagating in the atmosphere. , 2000, Optics letters.

[110]  S. Chin,et al.  Conical emission from laser plasma interactions in the filamentation of powerful ultrashort laser pulses in air. , 1997, Optics letters.

[111]  P. Sprangle,et al.  Effect of an energy reservoir on the atmospheric propagation of laser-plasma filaments. , 2008, Physical review letters.

[112]  P Di Trapani,et al.  Self-reconstruction of light filaments. , 2004, Optics letters.

[113]  Mikhail A. Bolshov,et al.  A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples , 2000 .

[114]  G. Roy,et al.  Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy , 2007 .

[115]  Masayuki Fujita,et al.  Observation of Asian Dust Aerosols with Depolarization Lidar Using a Coherent White Light Continuum , 2008 .