Invariant Signatures of Closed Planar Curves

We prove that any subset of ℝ2 parametrized by a C1 periodic function and its derivative is the Euclidean invariant signature of a closed planar curve. This solves a problem posed by Calabi et al. (Int. J. Comput. Vis. 26:107–135, 1998). Based on the proof of this result, we then develop some cautionary examples concerning the application of signature curves for object recognition and symmetry detection as proposed by Calabi et al.

[1]  E. Musso,et al.  Closed trajectories of a particle model on null curves in anti-de Sitter 3-space , 2007, 0709.2017.

[2]  Emilio Musso,et al.  Reduction for Constrained Variational Problems on 3-Dimensional Null Curves , 2007, SIAM J. Control. Optim..

[3]  Steven Haker,et al.  Differential and Numerically Invariant Signature Curves Applied to Object Recognition , 1998, International Journal of Computer Vision.

[4]  Geometrical particle models on 3D null curves , 2002, hep-th/0205284.

[5]  P. J. Olver,et al.  Foundations of Computational Mathematics: Moving frames — in geometry, algebra, computer vision, and numerical analysis , 2001 .

[6]  B. Dahlberg The converse of the four vertex theorem , 2005 .

[7]  Alfred M. Bruckstein,et al.  Skew symmetry detection via invariant signatures , 1998, Pattern Recognit..

[8]  Reduction for the projective arclength functional , 2005 .

[9]  Stefano Soatto,et al.  Integral Invariant Signatures , 2004, ECCV.

[10]  Coisotropic variational problems , 2003, math/0307216.

[11]  Richard C. Brower,et al.  Geometrical models of interface evolution , 1984 .

[12]  P. Olver,et al.  Moving Coframes: II. Regularization and Theoretical Foundations , 1999 .

[13]  Changzheng Qu,et al.  Integrable equations arising from motions of plane curves , 2002 .

[14]  Peter J. Olvery Moving Frames - in Geometry, Algebra, Computer Vision, and Numerical Analysis , 2000 .

[15]  Phillip A. Griffiths,et al.  Exterior Differential Systems and the Calculus of Variations , 1982 .

[16]  Peter J. Olver,et al.  Moving frames , 2003, J. Symb. Comput..

[17]  Mireille Boutin,et al.  Numerically Invariant Signature Curves , 1999, International Journal of Computer Vision.

[18]  Alfred M. Bruckstein,et al.  Similarity-invariant signatures for partially occluded planar shapes , 1992, International Journal of Computer Vision.

[19]  Alfred M. Bruckstein,et al.  Skew Symmmetry Detection via Invariant Signatures , 1995, CAIP.

[20]  Alfred M. Bruckstein,et al.  On differential invariants of planar curves and recognizing partially occluded planar shapes , 1995, Annals of Mathematics and Artificial Intelligence.