Mixtures of general linear models for functional neuroimaging

We set out a new general framework for making inferences from neuroimaging data, which includes a standard approach to neuroimaging analysis, statistical parametric mapping (SPM), as a special case. The model offers numerous conceptual and statistical advantages that derive from analyzing data at the "cluster level" rather than the "voxel level" and from explicit modeling of the shape and position of clusters of activation. This provides a natural and principled way to pool data from nearby voxels for parameter and variance-component estimation. The model can also be viewed as performing a spatio-temporal cluster analysis. The parameters of the model are estimated using an expectation maximization (EM) algorithm.

[1]  T. Shallice,et al.  Face repetition effects in implicit and explicit memory tests as measured by fMRI. , 2002, Cerebral cortex.

[2]  Xavier Descombes,et al.  fMRI Signal Restoration Using a Spatio-Temporal Markov Random Field Preserving Transitions , 1998, NeuroImage.

[3]  Emery N. Brown,et al.  A signal estimation approach to functional MRI , 2001, IEEE Transactions on Medical Imaging.

[4]  Jagath C. Rajapakse,et al.  Bayesian approach to segmentation of statistical parametric maps , 2001, IEEE Transactions on Biomedical Engineering.

[5]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[6]  Alex Pentland,et al.  Maximum Conditional Likelihood via Bound Maximization and the CEM Algorithm , 1998, NIPS.

[7]  Markus Svensén,et al.  Probabilistic modeling of single-trial fMRI data , 2000, IEEE Transactions on Medical Imaging.

[8]  L. K. Hansen,et al.  On Clustering fMRI Time Series , 1999, NeuroImage.

[9]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[11]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[12]  M. Kendall Theoretical Statistics , 1956, Nature.

[13]  S. Ogawa,et al.  BOLD Based Functional MRI at 4 Tesla Includes a Capillary Bed Contribution: Echo‐Planar Imaging Correlates with Previous Optical Imaging Using Intrinsic Signals , 1995, Magnetic resonance in medicine.

[14]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[15]  J RobertsStephen,et al.  Bayesian Approaches to Gaussian Mixture Modeling , 1998 .

[16]  Donald B. Rubin,et al.  Max-imum Likelihood from Incomplete Data , 1972 .

[17]  Karl J. Friston,et al.  Event‐related f MRI , 1997, Human brain mapping.

[18]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[19]  Karl J. Friston,et al.  Anatomically Informed Basis Functions , 2000, NeuroImage.

[20]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[21]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[22]  T. Hebert,et al.  A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors. , 1989, IEEE transactions on medical imaging.

[23]  J. Ashburner,et al.  Nonlinear spatial normalization using basis functions , 1999, Human brain mapping.

[24]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[25]  Karl J. Friston,et al.  Event-related fMRI , 1997 .

[26]  William H. Press,et al.  Numerical recipes in C , 2002 .

[27]  M. Hallett Human Brain Function , 1998, Trends in Neurosciences.

[28]  William D. Penny,et al.  Bayesian Approaches to Gaussian Mixture Modeling , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Geoffrey E. Hinton,et al.  SMEM Algorithm for Mixture Models , 1998, Neural Computation.

[30]  N. Hartvig A stochastic geometry model for fMRI data , 1999 .

[31]  C. Büchel,et al.  Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. , 1997, Cerebral cortex.