STS propellant densification feasibility study data book
暂无分享,去创建一个
The feasibility of using densification or subcooling with respect to standard temperature propellants on the Space Transportation System (STS) in order to achieve a payload gain is discussed in this report. The objective is to determine the magnitude of the payload gain and to identify any system impacts to the space shuttle on either flight systems or ground systems. Results show that a payload benefit can be obtained by subcooling the liquid hydrogen (LH2) from a nominal temperature of 36.4 R to 28.5 R and by subcooling the liquid oxygen (LO2) from a nominal temperature of 164 R to either 132.1 R or 141.4 R. When the propellants are subcooled to 28.5 R and 132.1 R for the LH2 and LO2, respectively, a maximum payload gain of 7,324 lb can be achieved, and when the propellants are subcooled to 28.5 R and 141.5 R for the LH2 and LO2, respectively, a maximum payload gain of 6,841 lb can be achieved. If the LH2 is subcooled to 28.5 R while the LH2 and LO2 remains at the nominal conditions, a maximum payload gain of 1,303 lb can be achieved.