Double Coupled Canonical Polyadic Decomposition for Joint Blind Source Separation

Joint blind source separation (J-BSS) is an emerging data-driven technique for multi-set data-fusion. In this paper, J-BSS is addressed from a tensorial perspective. We show how, by using second-order multi-set statistics in J-BSS, a specific double coupled canonical polyadic decomposition (DC-CPD) problem can be formulated. We propose an algebraic DC-CPD algorithm based on a coupled rank-1 detection mapping. This algorithm converts a possibly underdetermined DC-CPD to a set of overdetermined CPDs. The latter can be solved algebraically via a generalized eigenvalue decomposition based scheme. Therefore, this algorithm is deterministic and returns the exact solution in the noiseless case. In the noisy case, it can be used to effectively initialize optimization based DC-CPD algorithms. In addition, we obtain the deterministic and generic uniqueness conditions for DC-CPD, which are shown to be more relaxed than their CPD counterpart. We also introduce optimization based DC-CPD methods, including alternating least squares, and structured data fusion based methods. Experiment results are given to illustrate the superiority of DC-CPD over standard CPD based BSS methods and several existing J-BSS methods, with regards to uniqueness and accuracy.

[1]  Lieven De Lathauwer,et al.  On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part I: Basic Results and Uniqueness of One Factor Matrix , 2013, SIAM J. Matrix Anal. Appl..

[2]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[3]  Lieven De Lathauwer,et al.  Canonical Polyadic Decomposition of Third-Order Tensors: Reduction to Generalized Eigenvalue Decomposition , 2013, SIAM J. Matrix Anal. Appl..

[4]  Lieven De Lathauwer,et al.  Coupled Canonical Polyadic Decompositions and (Coupled) Decompositions in Multilinear Rank-(Lr, n, Lr, n, 1) Terms - Part I: Uniqueness , 2015, SIAM J. Matrix Anal. Appl..

[5]  Lieven De Lathauwer,et al.  New Uniqueness Conditions for the Canonical Polyadic Decomposition of Third-Order Tensors , 2015, SIAM J. Matrix Anal. Appl..

[6]  R. A. Harshman,et al.  Data preprocessing and the extended PARAFAC model , 1984 .

[7]  Vince D. Calhoun,et al.  Canonical Correlation Analysis for Data Fusion and Group Inferences , 2010, IEEE Signal Processing Magazine.

[8]  Te-Won Lee,et al.  Independent vector analysis (IVA): Multivariate approach for fMRI group study , 2008, NeuroImage.

[9]  Lieven De Lathauwer,et al.  Optimization-Based Algorithms for Tensor Decompositions: Canonical Polyadic Decomposition, Decomposition in Rank-(Lr, Lr, 1) Terms, and a New Generalization , 2013, SIAM J. Optim..

[10]  Lieven De Lathauwer,et al.  Generic Uniqueness Conditions for the Canonical Polyadic Decomposition and INDSCAL , 2014, SIAM J. Matrix Anal. Appl..

[11]  Pierre Comon,et al.  Exploring Multimodal Data Fusion Through Joint Decompositions with Flexible Couplings , 2015, IEEE Transactions on Signal Processing.

[12]  C. F. Beckmann,et al.  Tensorial extensions of independent component analysis for multisubject FMRI analysis , 2005, NeuroImage.

[13]  Sabine Van Huffel,et al.  A Combination of Parallel Factor and Independent Component Analysis , 2022 .

[14]  Xiaofeng Gong,et al.  Tensor decomposition of EEG signals: A brief review , 2015, Journal of Neuroscience Methods.

[15]  Giorgio Ottaviani,et al.  On Generic Identifiability of 3-Tensors of Small Rank , 2011, SIAM J. Matrix Anal. Appl..

[16]  Pierre Comon,et al.  Multimodal approach to estimate the ocular movements during EEG recordings: A coupled tensor factorization method , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[17]  Tülay Adali,et al.  Joint Blind Source Separation With Multivariate Gaussian Model: Algorithms and Performance Analysis , 2012, IEEE Transactions on Signal Processing.

[18]  Lieven De Lathauwer,et al.  Multidimensional Harmonic Retrieval via Coupled Canonical Polyadic Decomposition—Part II: Algorithm and Multirate Sampling , 2017, IEEE Transactions on Signal Processing.

[19]  Lieven De Lathauwer,et al.  Stochastic and Deterministic Tensorization for Blind Signal Separation , 2015, LVA/ICA.

[20]  Zhi-Quan Luo,et al.  A Unified Convergence Analysis of Block Successive Minimization Methods for Nonsmooth Optimization , 2012, SIAM J. Optim..

[21]  Lieven De Lathauwer,et al.  Blind Signal Separation via Tensor Decomposition With Vandermonde Factor: Canonical Polyadic Decomposition , 2013, IEEE Transactions on Signal Processing.

[22]  G. Pagnoni,et al.  A unified framework for group independent component analysis for multi-subject fMRI data , 2009, NeuroImage.

[23]  Lieven De Lathauwer,et al.  Tensor-based techniques for the blind separation of DS-CDMA signals , 2007, Signal Process..

[24]  Lieven De Lathauwer,et al.  Coupled tensor decompositions for applications in array signal processing , 2013, 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[25]  Lieven De Lathauwer,et al.  Multidimensional Harmonic Retrieval via Coupled Canonical Polyadic Decomposition—Part I: Model and Identifiability , 2017, IEEE Transactions on Signal Processing.

[26]  Lieven De Lathauwer,et al.  Coupled Canonical Polyadic Decompositions and (Coupled) Decompositions in Multilinear Rank- (Lr, n, Lr, n, 1) Terms - Part II: Algorithms , 2015, SIAM J. Matrix Anal. Appl..

[27]  P. Comon,et al.  Algebraic identification of under-determined mixtures , 2010 .

[28]  Lieven De Lathauwer,et al.  Blind Identification of Underdetermined Mixtures by Simultaneous Matrix Diagonalization , 2008, IEEE Transactions on Signal Processing.

[29]  Lieven De Lathauwer,et al.  A Link between the Canonical Decomposition in Multilinear Algebra and Simultaneous Matrix Diagonalization , 2006, SIAM J. Matrix Anal. Appl..

[30]  André Uschmajew,et al.  Local Convergence of the Alternating Least Squares Algorithm for Canonical Tensor Approximation , 2012, SIAM J. Matrix Anal. Appl..

[31]  Lieven De Lathauwer,et al.  On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part II: Uniqueness of the Overall Decomposition , 2013, SIAM J. Matrix Anal. Appl..

[32]  Vince D. Calhoun,et al.  Multi-set canonical correlation analysis for the fusion of concurrent single trial ERP and functional MRI , 2010, NeuroImage.

[33]  Heping Ding,et al.  A Region-Growing Permutation Alignment Approach in Frequency-Domain Blind Source Separation of Speech Mixtures , 2011, IEEE Transactions on Audio, Speech, and Language Processing.

[34]  Nikos D. Sidiropoulos,et al.  Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..

[35]  Lieven De Lathauwer,et al.  Structured Data Fusion , 2015, IEEE Journal of Selected Topics in Signal Processing.

[36]  Ronald Phlypo,et al.  Orthogonal and non-orthogonal joint blind source separation in the least-squares sense , 2012, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).

[37]  L. Lathauwer,et al.  An enhanced plane search scheme for complex-valued tensor decompositions , 2010 .

[38]  Yukihiko Yamashita,et al.  Linked PARAFAC/CP Tensor Decomposition and Its Fast Implementation for Multi-block Tensor Analysis , 2012, ICONIP.

[39]  T. Kailath,et al.  Spatio-temporal spectral analysis by eigenstructure methods , 1984 .

[40]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[41]  Te-Won Lee,et al.  Blind Source Separation Exploiting Higher-Order Frequency Dependencies , 2007, IEEE Transactions on Audio, Speech, and Language Processing.

[42]  L. Lathauwer,et al.  Canonical polyadic decomposition of third-order tensors: relaxed uniqueness conditions and algebraic algorithm , 2015, 1501.07251.

[43]  Andrzej Cichocki,et al.  Low Complexity Damped Gauss-Newton Algorithms for CANDECOMP/PARAFAC , 2012, SIAM J. Matrix Anal. Appl..

[44]  Vince D. Calhoun,et al.  Joint Blind Source Separation by Multiset Canonical Correlation Analysis , 2009, IEEE Transactions on Signal Processing.

[45]  Lieven De Lathauwer,et al.  An enhanced line search scheme for complex-valued tensor decompositions. Application in DS-CDMA , 2008, Signal Process..

[46]  Christian Jutten,et al.  Multimodal Data Fusion: An Overview of Methods, Challenges, and Prospects , 2015, Proceedings of the IEEE.

[47]  Pierre Comon,et al.  Enhanced Line Search: A Novel Method to Accelerate PARAFAC , 2008, SIAM J. Matrix Anal. Appl..

[48]  Mark W. Woolrich,et al.  Linked independent component analysis for multimodal data fusion , 2011, NeuroImage.

[49]  Athina P. Petropulu,et al.  PARAFAC-Based Blind Estimation Of Possibly Underdetermined Convolutive MIMO Systems , 2008, IEEE Transactions on Signal Processing.

[50]  Xun Chen,et al.  Underdetermined Joint Blind Source Separation of Multiple Datasets , 2017, IEEE Access.

[51]  Pierre Comon,et al.  Canonical Polyadic Decomposition with a Columnwise Orthonormal Factor Matrix , 2012, SIAM J. Matrix Anal. Appl..

[52]  Andrzej Cichocki,et al.  Canonical Polyadic Decomposition Based on a Single Mode Blind Source Separation , 2012, IEEE Signal Processing Letters.

[53]  Andrzej Cichocki,et al.  Linked Component Analysis From Matrices to High-Order Tensors: Applications to Biomedical Data , 2015, Proceedings of the IEEE.

[54]  Andrzej Cichocki,et al.  Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.

[55]  Tülay Adali,et al.  Joint blind source separation by generalized joint diagonalization of cumulant matrices , 2011, Signal Process..

[56]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[57]  Qiu-Hua Lin,et al.  Joint canonical polyadic decomposition of two tensors with one shared loading matrix , 2013, 2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP).

[58]  Nikos D. Sidiropoulos,et al.  Blind PARAFAC receivers for DS-CDMA systems , 2000, IEEE Trans. Signal Process..

[59]  P. Paatero The Multilinear Engine—A Table-Driven, Least Squares Program for Solving Multilinear Problems, Including the n-Way Parallel Factor Analysis Model , 1999 .

[60]  Vince D. Calhoun,et al.  A review of multivariate methods for multimodal fusion of brain imaging data , 2012, Journal of Neuroscience Methods.

[61]  Wei Cui,et al.  Low-Complexity Direction-of-Arrival Estimation Based on Wideband Co-Prime Arrays , 2015, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[62]  R. Harshman,et al.  PARAFAC: parallel factor analysis , 1994 .

[63]  Qiu-Hua Lin,et al.  Generalized Non-Orthogonal Joint Diagonalization With LU Decomposition and Successive Rotations , 2015, IEEE Transactions on Signal Processing.

[64]  Nikos D. Sidiropoulos,et al.  Tensor Decomposition for Signal Processing and Machine Learning , 2016, IEEE Transactions on Signal Processing.

[65]  Morten Mørup,et al.  Applications of tensor (multiway array) factorizations and decompositions in data mining , 2011, WIREs Data Mining Knowl. Discov..

[66]  Lieven De Lathauwer,et al.  Exact line and plane search for tensor optimization , 2013, Computational optimization and applications.

[67]  Ronald Phlypo,et al.  Joint BSS as a natural analysis framework for EEG-hyperscanning , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[68]  Bruce R. Kowalski,et al.  Generalized rank annihilation method , 1987 .

[69]  Laurent Albera,et al.  Tensor-based preprocessing of combined EEG/MEG data , 2012, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).

[70]  Lieven De Lathauwer,et al.  Multiple Invariance ESPRIT for Nonuniform Linear Arrays: A Coupled Canonical Polyadic Decomposition Approach , 2016, IEEE Transactions on Signal Processing.

[71]  Rasmus Bro,et al.  Data Fusion in Metabolomics Using Coupled Matrix and Tensor Factorizations , 2015, Proceedings of the IEEE.