Codimensional surface tension flow using moving-least-squares particles

We propose a new Eulerian-Lagrangian approach to simulate the various surface tension phenomena characterized by volume, thin sheets, thin filaments, and points using Moving-Least-Squares (MLS) particles. At the center of our approach is a meshless Lagrangian description of the different types of codimensional geometries and their transitions using an MLS approximation. In particular, we differentiate the codimension-1 and codimension-2 geometries on Lagrangian MLS particles to precisely describe the evolution of thin sheets and filaments, and we discretize the codimension-0 operators on a background Cartesian grid for efficient volumetric processing. Physical forces including surface tension and pressure across different codimensions are coupled in a monolithic manner by solving one single linear system to evolve the surface-tension driven Navier-Stokes system in a complex non-manifold space. The codimensional transitions are handled explicitly by tracking a codimension number stored on each particle, which replaces the tedious meshing operators in a conventional mesh-based approach. Using the proposed framework, we simulate a broad array of visually appealing surface tension phenomena, including the fluid chain, bell, polygon, catenoid, and dripping, to demonstrate the efficacy of our approach in capturing the complex fluid characteristics with mixed codimensions, in a robust, versatile, and connectivity-free manner.

[1]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[2]  Jan Bender,et al.  A Physically Consistent Implicit Viscosity Solver for SPH Fluids , 2018, Comput. Graph. Forum.

[3]  Christophe Clanet,et al.  Waterbells and Liquid Sheets , 2007 .

[4]  R. LeVeque High-resolution conservative algorithms for advection in incompressible flow , 1996 .

[5]  Mikhail Belkin,et al.  Towards a theoretical foundation for Laplacian-based manifold methods , 2005, J. Comput. Syst. Sci..

[6]  M. Gross,et al.  Unified simulation of elastic rods, shells, and solids , 2010, ACM Trans. Graph..

[7]  M. Gross,et al.  A multiscale approach to mesh-based surface tension flows , 2010, ACM Trans. Graph..

[8]  Hongkai Zhao,et al.  A grid based particle method for moving interface problems , 2009, J. Comput. Phys..

[9]  Francis H Harlow,et al.  The particle-in-cell method for numerical solution of problems in fluid dynamics , 1962 .

[10]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[11]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[12]  Matthias Teschner,et al.  Moving Least Squares Boundaries for SPH Fluids , 2017, VRIPHYS.

[13]  Robert Bridson,et al.  Variational stokes , 2017, ACM Trans. Graph..

[14]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[15]  Robert Bridson,et al.  Robust Topological Operations for Dynamic Explicit Surfaces , 2009, SIAM J. Sci. Comput..

[16]  Ronald Fedkiw,et al.  Codimensional non-Newtonian fluids , 2015, ACM Trans. Graph..

[17]  R. Saye High-order methods for computing distances to implicitly defined surfaces , 2014 .

[18]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[19]  Yi Chen,et al.  Wasserstein blue noise sampling , 2017, TOGS.

[20]  Eitan Grinspun,et al.  Discrete viscous sheets , 2012, ACM Trans. Graph..

[21]  Robert Bridson,et al.  Accurate viscous free surfaces for buckling, coiling, and rotating liquids , 2008, SCA '08.

[22]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[23]  Robert Bridson,et al.  Animating sand as a fluid , 2005, ACM Trans. Graph..

[24]  Matthias Teschner,et al.  Versatile surface tension and adhesion for SPH fluids , 2013, ACM Trans. Graph..

[25]  Steven J. Ruuth,et al.  A localized meshless method for diffusion on folded surfaces , 2015, J. Comput. Phys..

[26]  David Levin,et al.  The approximation power of moving least-squares , 1998, Math. Comput..

[27]  Niloy J. Mitra,et al.  Estimating surface normals in noisy point cloud data , 2003, SCG '03.

[28]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[29]  Jessica K. Hodgins,et al.  A point-based method for animating incompressible flow , 2009, SCA '09.

[30]  Toshiya Hachisuka,et al.  A hyperbolic geometric flow for evolving films and foams , 2017, ACM Trans. Graph..

[31]  Robert Bridson,et al.  MultiFLIP for energetic two-phase fluid simulation , 2012, TOGS.

[32]  Leonidas J. Guibas,et al.  Adaptively sampled particle fluids , 2007, ACM Trans. Graph..

[33]  Eitan Grinspun,et al.  Surface-only liquids , 2016, ACM Trans. Graph..

[34]  Jens Schneider,et al.  Real‐Time Fluid Effects on Surfaces using the Closest Point Method , 2012, Comput. Graph. Forum.

[35]  Daniel Weiskopf,et al.  Evaluation of Surface Tension Models for SPH-Based Fluid Animations Using a Benchmark Test , 2015, VRIPHYS.

[36]  J. Brackbill,et al.  FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions , 1986 .

[37]  Huamin Wang,et al.  A Deformable Surface Model for Real-Time Water Drop Animation , 2012, IEEE Transactions on Visualization and Computer Graphics.

[38]  Xuchen Han,et al.  A material point method for thin shells with frictional contact , 2018, ACM Trans. Graph..

[39]  Ming C. Lin,et al.  Implicit Formulation for SPH‐based Viscous Fluids , 2015, Comput. Graph. Forum.

[40]  Hanspeter Pfister,et al.  Volume MLS Ray Casting , 2008, IEEE Transactions on Visualization and Computer Graphics.

[41]  J. Jost Riemannian geometry and geometric analysis , 1995 .

[42]  Afonso Paiva,et al.  Mesh‐Free Discrete Laplace–Beltrami Operator , 2013, Comput. Graph. Forum.

[43]  Hongkai Zhao,et al.  A local mesh method for solving PDEs on point clouds , 2013 .

[44]  Jun-Hai Yong,et al.  Simulation of bubbles , 2006, SCA '06.

[45]  E. Grinspun Discrete differential geometry : An applied introduction , 2008, SIGGRAPH 2008.

[46]  Ben Jones,et al.  Deformation embedding for point-based elastoplastic simulation , 2014, TOGS.

[47]  Matthias Teschner,et al.  Prescribed Velocity Gradients for Highly Viscous SPH Fluids with Vorticity Diffusion , 2017, IEEE Transactions on Visualization and Computer Graphics.

[48]  David I. W. Levin,et al.  Eulerian-on-lagrangian cloth simulation , 2018, ACM Trans. Graph..

[49]  Andre Pradhana,et al.  A moving least squares material point method with displacement discontinuity and two-way rigid body coupling , 2018, ACM Trans. Graph..

[50]  M. Afshar,et al.  Simulating free surface problems using Discrete Least Squares Meshless method , 2010 .

[51]  Marc Alexa,et al.  Point set surfaces , 2001, Proceedings Visualization, 2001. VIS '01..

[52]  Jian-Jun Zhang,et al.  Blue noise sampling using an SPH-based method , 2015, ACM Trans. Graph..

[53]  Reiji Tsuruno,et al.  Preserving Fluid Sheets with Adaptively Sampled Anisotropic Particles , 2012, IEEE Transactions on Visualization and Computer Graphics.

[54]  Leonidas J. Guibas,et al.  Meshless animation of fracturing solids , 2005, ACM Trans. Graph..

[55]  Paul Meakin,et al.  Modeling of surface tension and contact angles with smoothed particle hydrodynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  J. M. Bush,et al.  On the collision of laminar jets: fluid chains and fishbones , 2004, Journal of Fluid Mechanics.

[57]  Ronald Fedkiw,et al.  A new incompressibility discretization for a hybrid particle MAC grid representation with surface tension , 2015, J. Comput. Phys..

[58]  Jihun Yu,et al.  Reconstructing surfaces of particle-based fluids using anisotropic kernels , 2010, SCA '10.

[59]  Mingyu Zhang,et al.  Simulation of surface tension in 2D and 3D with smoothed particle hydrodynamics method , 2010, J. Comput. Phys..

[60]  Marc Alexa,et al.  Point based animation of elastic, plastic and melting objects , 2004, SCA '04.

[61]  Eftychios Sifakis,et al.  An adaptive generalized interpolation material point method for simulating elastoplastic materials , 2017, ACM Trans. Graph..

[62]  Mikhail Belkin,et al.  Constructing Laplace operator from point clouds in Rd , 2009, SODA.

[63]  Matthias Teschner,et al.  MLS Pressure Extrapolation for the Boundary Handling in Divergence-Free SPH , 2018, VRIPHYS.

[64]  Hongkai Zhao,et al.  A grid based particle method for evolution of open curves and surfaces , 2009, J. Comput. Phys..

[65]  Rüdiger Westermann,et al.  Narrow Band FLIP for Liquid Simulations , 2016, Comput. Graph. Forum.

[66]  Eitan Grinspun,et al.  A Unified Simplicial Model for Mixed-Dimensional and Non-Manifold Deformable Elastic Objects , 2019, PACMCGIT.

[67]  Rüdiger Westermann,et al.  A Semi‐Lagrangian Closest Point Method for Deforming Surfaces , 2013, Comput. Graph. Forum.

[68]  Ronald Fedkiw,et al.  A symmetric positive definite formulation for monolithic fluid structure interaction , 2011, J. Comput. Phys..

[69]  Chenfanfu Jiang,et al.  The affine particle-in-cell method , 2015, ACM Trans. Graph..

[70]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[71]  J. Brackbill,et al.  Flip: A low-dissipation, particle-in-cell method for fluid flow , 1988 .

[72]  Jian Liang,et al.  Solving Partial Differential Equations on Point Clouds , 2013, SIAM J. Sci. Comput..

[73]  Chang-Hun Kim,et al.  Bubbles alive , 2008, ACM Trans. Graph..

[74]  Matthias Teschner,et al.  Implicit Incompressible SPH , 2014, IEEE Transactions on Visualization and Computer Graphics.

[75]  Theodore Kim,et al.  Closest point turbulence for liquid surfaces , 2013, TOGS.

[76]  Duc Quang Nguyen,et al.  Directable photorealistic liquids , 2004, SCA '04.

[77]  Tsz Wai Wong,et al.  Geometric understanding of point clouds using Laplace-Beltrami operator , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[78]  Matthias Teschner,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Weakly Compressible Sph for Free Surface Flows , 2022 .

[79]  Xiao-Juan Ban,et al.  Surface Tension Model Based on Implicit Incompressible Smoothed Particle Hydrodynamics for Fluid Simulation , 2017, Journal of Computer Science and Technology.

[80]  Chenfanfu Jiang,et al.  Anisotropic elastoplasticity for cloth, knit and hair frictional contact , 2017, ACM Trans. Graph..

[81]  Ronald Fedkiw,et al.  Semi-implicit surface tension formulation with a Lagrangian surface mesh on an Eulerian simulation grid , 2012, J. Comput. Phys..

[82]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[83]  Chang-Hun Kim,et al.  Divergence‐constrained moving least squares for fluid simulation , 2008, Comput. Animat. Virtual Worlds.

[84]  Steven J. Ruuth,et al.  A simple embedding method for solving partial differential equations on surfaces , 2008, J. Comput. Phys..

[85]  Eitan Grinspun,et al.  Double bubbles sans toil and trouble , 2015, ACM Trans. Graph..

[86]  Huamin Wang,et al.  Robust Simulation of Sparsely Sampled Thin Features in SPH-Based Free Surface Flows , 2014, ACM Trans. Graph..

[87]  Keenan Crane,et al.  A Glimpse into Discrete Diff erential Geometry , 2017 .

[88]  Hongkai Zhao,et al.  A grid based particle method for solving partial differential equations on evolving surfaces and modeling high order geometrical motion , 2011, J. Comput. Phys..

[89]  Eitan Grinspun,et al.  Continuum Foam , 2015, ACM Trans. Graph..

[90]  Ronald Fedkiw,et al.  Codimensional surface tension flow on simplicial complexes , 2014, ACM Trans. Graph..

[91]  Andreas Kolb,et al.  Infinite continuous adaptivity for incompressible SPH , 2017, ACM Trans. Graph..

[92]  Nikolaus A. Adams,et al.  A multi-phase SPH method for macroscopic and mesoscopic flows , 2006, J. Comput. Phys..