Microscopic Investigation of High-Temperature Oxidation of hcp-ZrAl2

[1]  Q. An,et al.  Effect of Al addition on properties of Cu45Zr45.5Ti9.5 bulk metallic glass , 2020, Materials Chemistry and Physics.

[2]  Yongchang Liu,et al.  Effect of structural order on oxidation kinetics and oxide phase evolution of Al–Zr alloys , 2020 .

[3]  Junsong Zhang,et al.  Nodular Corrosion of Zr–0.85Sn–0.16Nb–0.37Fe–0.18Cr Alloy in 500 °C Steam Caused by High-temperature Processing , 2019, Oxidation of Metals.

[4]  X. Zhang,et al.  Microstructure and mechanical properties of ZrAl binary alloys , 2019, Journal of Alloys and Compounds.

[5]  I. Panas,et al.  Reactive Element Effects in High-Temperature Alloys Disentangled , 2019, Oxidation of Metals.

[6]  M. Amaya,et al.  The Effect of Air Fraction in Steam on the Embrittlement of Zry-4 Fuel Cladding Oxidized at 1273–1573 K , 2019, Oxidation of Metals.

[7]  Sun Xiaofeng,et al.  Effects of Al on microstructural stability and related stress-rupture properties of a third-generation single crystal superalloy , 2019, Journal of Materials Science & Technology.

[8]  Zi-kui Liu,et al.  Effects of Hf, Y, and Zr on Alumina Scale Growth on NiAlCr and NiAlPt Alloys , 2019, Oxidation of Metals.

[9]  Yongchang Liu,et al.  Anomalous formation of micrometer-thick amorphous oxide surficial layers during high-temperature oxidation of ZrAl2 , 2019, Journal of Materials Science & Technology.

[10]  L. Gu,et al.  Natural oxidation of amorphous Cu Zr1- alloys , 2018, Applied Surface Science.

[11]  Hun Jang,et al.  Analysis of EBSD image quality related to microstructure evolution in zirconium–niobium cladding to quantify the degree of recrystallization , 2018, Journal of Nuclear Materials.

[12]  Sung Hyuk Park,et al.  Evaluation of anisotropic deformation behaviors in H-charged Zircaloy-4 tube , 2018, Journal of Nuclear Materials.

[13]  C. Pan,et al.  Positron Annihilation Study of High-Temperature Oxidation Behavior of Zr–1Nb Alloy , 2018, Oxidation of Metals.

[14]  J. Shen,et al.  Microstructural evolution and high-temperature oxidation mechanisms of a titanium aluminide based alloy , 2018 .

[15]  Jie Fu,et al.  Effect of Al addition on superelastic properties of Ti–Zr–Nb-based alloys , 2017 .

[16]  E. .. Mittemeijer,et al.  Oxidation kinetics of amorphous AlxZr1−x alloys , 2016 .

[17]  M. Palm,et al.  The effect of Zr on high-temperature oxidation behaviour of Fe3Al-based alloys , 2015 .

[18]  Y. Kawazoe,et al.  Cluster characteristics and physical properties of binary Al–Zr intermetallic compounds from first principles studies , 2015 .

[19]  Li Jinshan,et al.  High-Temperature Oxidation Behavior of Ti-22Al-27(Nb, Zr) Alloys , 2015 .

[20]  M. Peng,et al.  Stability, elastic properties and electronic structures of the stable Zr–Al intermetallic compounds: A first-principles investigation , 2014 .

[21]  Yong Liu,et al.  First-principles study of structural and electronic properties of C14-type Laves phase Al2Zr and Al2Hf , 2014 .

[22]  Xiaojun Wang,et al.  Role of Al18B4O33 Whisker in MAO Process of Mg Matrix Composite and Protective Properties of the Oxidation Coating , 2013 .

[23]  Tao Zhang,et al.  The relationship between t-ZrO2 stability and the crystallization of a Zr-based bulk metallic glass during oxidation , 2012 .

[24]  Zi-kui Liu,et al.  Elastic properties of cubic, tetragonal and monoclinic ZrO2 from first-principles calculations , 2011 .

[25]  N. Ni,et al.  Porosity in oxides on zirconium fuel cladding alloys, and its importance in controlling oxidation rates , 2010 .

[26]  Donald J. Siegel,et al.  High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. , 2010, Chemical Society reviews.

[27]  G. Borchardt,et al.  High-Temperature Oxidation of Fe3Al and Fe3Al–Zr Intermetallics , 2009 .

[28]  Y. Feng,et al.  Ab initio calculation of the total energy and elastic properties of Laves phase C15 Al2RE (RE = Sc, Y, La, Ce–Lu) , 2008 .

[29]  Y. R. Chen,et al.  Oxidation behavior of an Zr53Ni23.5Al23.5 bulk metallic glass at 400–600 °C , 2007 .

[30]  A. Huntz,et al.  Synthesis, structure, microstructure and mechanical characteristics of MOCVD deposited zirconia films , 2007 .

[31]  D. Lee,et al.  High temperature oxidation of Ti–47%Al–1.7%W–3.7%Zr alloys , 2005 .

[32]  Gábor Opposits,et al.  Diffusion-induced stresses and their relaxation , 2004 .

[33]  M. Santella,et al.  High temperature oxidation of Ni3Al alloy containing Cr, Zr, Mo, and B , 2004 .

[34]  V. Fiorentini,et al.  Theoretical evaluation of zirconia and hafnia as gate oxides for si microelectronics. , 2002, Physical review letters.

[35]  Zhanpeng Jin,et al.  Thermodynamic assessment of the Al-Zr binary system , 2001 .

[36]  William G. Mallard,et al.  The NIST Chemistry WebBook: A Chemical Data Resource on the Internet† , 2001 .

[37]  C. Berndt,et al.  On the size-dependent phase transformation in nanoparticulate zirconia , 2000 .

[38]  H. Ye Recent developments in Ti3Al and TiAl intermetallics research in China , 1999 .

[39]  R. E. Watson,et al.  Stability of Zr-Al alloys , 1998 .

[40]  B. Cox Hydrogen uptake during oxidation of zirconium alloys , 1997 .

[41]  W. Johnson,et al.  Oxidation and crystallization of an amorphous Zr60Al15Ni25 alloy , 1996 .

[42]  J. Abriata,et al.  The Al-Zr (aluminum-zirconium) system , 1992 .

[43]  B. Davis,et al.  Critical Particle Size and Phase Transformation in Zirconia: Transmission Electron Microscopy and X-ray Diffraction Studies , 1990 .

[44]  Harold H. Kung,et al.  Transition Metal Oxides: Surface Chemistry and Catalysis , 1989 .

[45]  Per Kofstad,et al.  High Temperature Corrosion , 1988 .

[46]  B. Cheadle,et al.  Development of Zirconium Alloys for Pressure Tubes in Candu Reactors , 1985 .

[47]  F. Pettit,et al.  Introduction to the high-temperature oxidation of metals , 2006 .

[48]  T. Gupta,et al.  Effect of stress-induced phase transformation on the properties of polycrystalline zirconia containing metastable tetragonal phase , 1978 .

[49]  M. Ichihara,et al.  Characterization and Stabilization of Metastable Tetragonal ZrO2 , 1974 .

[50]  R. R. Dils,et al.  High‐Temperature Oxidation II . Molybdenum Silicides , 1964 .