Green functions of finite Chevalley groups of type En (n = 6, 7, 8)

[1]  M. Goresky,et al.  Intersection homology II , 1983 .

[2]  G. Lusztig,et al.  On Springer's correspondence for simple groups of type En (n = 6, 7, 8) , 1982, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  R. Hotta On Springer's representations , 1982 .

[4]  G. Lusztig Green polynomials and singularities of unipotent classes , 1981 .

[5]  Kenzo Mizuno The Conjugate Classes of Unipotent Elements of the Chevalley Groups $E_7$ and $E_8$ , 1980 .

[6]  G. Lusztig,et al.  Induced Unipotent Classes , 1979 .

[7]  W. M. Beynon,et al.  Some numerical results on the characters of exceptional Weyl groups , 1978, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  D. Kazhdan Proof of Springer’s hypothesis , 1977 .

[9]  T. A. Springer,et al.  A specialization theorem for certain Weyl group representations and an application to the green polynomials of unitary groups , 1977 .

[10]  T. A. Springer Trigonometric sums, green functions of finite groups and representations of Weyl groups , 1976 .

[11]  R. Carter,et al.  Classes of unipotent elements in simple algebraic groups. I , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  Bomshik Chang,et al.  The conjugate classes of Chevalley groups of type (G2) , 1968 .

[13]  J. S. Frame The classes and representations of the groups of 27 lines and 28 bitangents , 1951 .

[14]  T. Shoji On the green polynomials of a chevalley group of type f4 , 1982 .

[15]  M. Goresky,et al.  INTERSECTION HOMOLOGY THEORY , 1980 .

[16]  B. Srinivasan Representations of Finite Chevalley Groups , 1979 .

[17]  N. Spaltenstein On the fixed point set of a unipotent element on the variety of borel subgroups , 1977 .

[18]  J. S. Frame The characters of the Weyl group E8 , 1970 .