Computationally Efficient Convolved Multiple Output Gaussian Processes
暂无分享,去创建一个
[1] H. Goldstein,et al. Differential school effectiveness , 1989 .
[2] Michael I. Jordan,et al. Advances in Neural Information Processing Systems 30 , 1995 .
[3] H. Goldstein. Multilevel Modelling of Survey Data , 1991 .
[4] M. Goulard,et al. Linear coregionalization model: Tools for estimation and choice of cross-variogram matrix , 1992 .
[5] Noel A Cressie,et al. Statistics for Spatial Data. , 1992 .
[6] Robert Haining,et al. Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .
[7] Mike Rees,et al. 5. Statistics for Spatial Data , 1993 .
[8] N. Cressie,et al. Universal cokriging under intrinsic coregionalization , 1994 .
[9] Ronald P. Barry,et al. Blackbox Kriging: Spatial Prediction Without Specifying Variogram Models , 1996 .
[10] Ronald P. Barry,et al. Constructing and fitting models for cokriging and multivariable spatial prediction , 1998 .
[11] David Higdon,et al. Non-Stationary Spatial Modeling , 2022, 2212.08043.
[12] Manfred Opper,et al. Sparse Representation for Gaussian Process Models , 2000, NIPS.
[13] Timothy C. Coburn,et al. Geostatistics for Natural Resources Evaluation , 2000, Technometrics.
[14] Tom Heskes,et al. Empirical Bayes for Learning to Learn , 2000, ICML.
[15] Alexander J. Smola,et al. Sparse Greedy Gaussian Process Regression , 2000, NIPS.
[16] Christopher K. I. Williams,et al. Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.
[17] Marc G. Genton,et al. Classes of Kernels for Machine Learning: A Statistics Perspective , 2002, J. Mach. Learn. Res..
[18] M. Fuentes. Interpolation of nonstationary air pollution processes: a spatial spectral approach , 2002 .
[19] C. Wikle. A kernel-based spectral model for non-Gaussian spatio-temporal processes , 2002 .
[20] M. Fuentes. Spectral methods for nonstationary spatial processes , 2002 .
[21] D. Higdon. Space and Space-Time Modeling using Process Convolutions , 2002 .
[22] M. Ashburner,et al. Systematic determination of patterns of gene expression during Drosophila embryogenesis , 2002, Genome Biology.
[23] Neil D. Lawrence,et al. Fast Sparse Gaussian Process Methods: The Informative Vector Machine , 2002, NIPS.
[24] Neil D. Lawrence,et al. Fast Forward Selection to Speed Up Sparse Gaussian Process Regression , 2003, AISTATS.
[25] Christopher K. Wikle,et al. Hierarchical Bayesian Models for Predicting The Spread of Ecological Processes , 2003 .
[26] Mark J. Schervish,et al. Nonstationary Covariance Functions for Gaussian Process Regression , 2003, NIPS.
[27] Tom Heskes,et al. Task Clustering and Gating for Bayesian Multitask Learning , 2003, J. Mach. Learn. Res..
[28] Rich Caruana,et al. Multitask Learning , 1997, Machine Learning.
[29] Marcus R. Frean,et al. Dependent Gaussian Processes , 2004, NIPS.
[30] David Higdon,et al. A process-convolution approach to modelling temperatures in the North Atlantic Ocean , 1998, Environmental and Ecological Statistics.
[31] L. M. Berliner,et al. Hierarchical Bayesian space-time models , 1998, Environmental and Ecological Statistics.
[32] Massimiliano Pontil,et al. Regularized multi--task learning , 2004, KDD.
[33] Charles A. Micchelli,et al. Learning Multiple Tasks with Kernel Methods , 2005, J. Mach. Learn. Res..
[34] Carl E. Rasmussen,et al. A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..
[35] Zoubin Ghahramani,et al. Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.
[36] Yee Whye Teh,et al. Semiparametric latent factor models , 2005, AISTATS.
[37] Neil D. Lawrence,et al. Modelling transcriptional regulation using Gaussian Processes , 2006, NIPS.
[38] Edwin V. Bonilla,et al. Multi-task Gaussian Process Prediction , 2007, NIPS.
[39] Neil D. Lawrence,et al. Learning for Larger Datasets with the Gaussian Process Latent Variable Model , 2007, AISTATS.
[40] Noel A Cressie,et al. Some topics in convolution-based spatial modeling , 2007 .
[41] S. Mukherjee,et al. Nonparametric Bayesian Kernel Models , 2007 .
[42] Stephen J. Roberts,et al. Gaussian Processes for Prediction , 2007 .
[43] Lawrence Carin,et al. Multi-Task Learning for Classification with Dirichlet Process Priors , 2007, J. Mach. Learn. Res..
[44] Catherine A. Calder,et al. Dynamic factor process convolution models for multivariate space–time data with application to air quality assessment , 2007, Environmental and Ecological Statistics.
[45] Sayan Mukherjee,et al. Characterizing the Function Space for Bayesian Kernel Models , 2007, J. Mach. Learn. Res..
[46] Zoubin Ghahramani,et al. Local and global sparse Gaussian process approximations , 2007, AISTATS.
[47] Neil D. Lawrence,et al. Sparse Convolved Gaussian Processes for Multi-output Regression , 2008, NIPS.
[48] Sarvapali D. Ramchurn,et al. 2008 International Conference on Information Processing in Sensor Networks Towards Real-Time Information Processing of Sensor Network Data using Computationally Efficient Multi-output Gaussian Processes , 2022 .
[49] Sethu Vijayakumar,et al. Multi-task Gaussian Process Learning of Robot Inverse Dynamics , 2008, NIPS.
[50] Neil D. Lawrence,et al. Gaussian process modelling of latent chemical species: applications to inferring transcription factor activities , 2008, ECCB.
[51] E. Furlong,et al. Combinatorial binding predicts spatio-temporal cis-regulatory activity , 2009, Nature.
[52] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[53] Neil D. Lawrence,et al. Latent Force Models , 2009, AISTATS.
[54] Michalis K. Titsias,et al. Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.
[55] Antti Honkela,et al. Model-based method for transcription factor target identification with limited data , 2010, Proceedings of the National Academy of Sciences.
[56] Bernhard Schölkopf,et al. Switched Latent Force Models for Movement Segmentation , 2010, NIPS.
[57] Neil D. Lawrence,et al. Efficient Multioutput Gaussian Processes through Variational Inducing Kernels , 2010, AISTATS.
[58] Neil D. Lawrence,et al. Kernels for Vector-Valued Functions , 2012 .
[59] Neil D. Lawrence,et al. Kernels for Vector-Valued Functions: a Review , 2011, Found. Trends Mach. Learn..