Maximum utility product pricing models and algorithms based on reservation price

We consider a revenue management model for pricing a product line with several customer segments under the assumption that customers’ product choices are determined entirely by their reservation prices. We highlight key mathematical properties of the maximum utility model and formulate it as a mixed-integer programming problem, design heuristics and valid cuts. We further present extensions of the models to deal with various practical issues arising in applications. Our computational experiments with real data from the tourism sector as well as with the randomly generated data show the effectiveness of our approach.

[1]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.

[2]  J. Pach,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[3]  Gregory Dobson,et al.  Positioning and Pricing a Product Line , 1988 .

[4]  G. Dobson,et al.  Heuristics for pricing and positioning a product-line using conjoint and cost data , 1993 .

[5]  S. Janson,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[6]  Éva Tardos,et al.  Note on Weintraub's Minimum-Cost Circulation Algorithm , 1989, SIAM J. Comput..

[7]  G. Nemhauser,et al.  Integer Programming , 2020 .

[8]  Marc J. Schniederjans,et al.  Goal Programming: Methodology and Applications , 2010 .

[9]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[10]  Ward Hanson,et al.  Optimal bundle pricing , 1990 .

[11]  Jean-Pierre Dussault,et al.  A smoothing heuristic for a bilevel pricing problem , 2006, Eur. J. Oper. Res..

[12]  W. Lieberman The Theory and Practice of Revenue Management , 2005 .

[13]  Daniel Bienstock,et al.  Tightening simple mixed-integer sets with guaranteed bounds , 2012, Math. Program..

[14]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[15]  Candace A. Yano,et al.  Product line selection and pricing under a share-of-surplus choice model , 2003, Eur. J. Oper. Res..

[16]  V. Mahajan,et al.  A Reservation-Price Model for Optimal Pricing of Multiattribute Products in Conjoint Analysis , 1991 .

[17]  Martin W. P. Savelsbergh,et al.  Lifted flow cover inequalities for mixed 0-1 integer programs , 1999, Math. Program..

[18]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[19]  A. Weintraub A Primal Algorithm to Solve Network Flow Problems with Convex Costs , 1974 .

[20]  Shlomo Kalish,et al.  A comparison of ranking, rating and reservation price measurement in conjoint analysis , 1991 .

[21]  G. Cornuéjols,et al.  Combinatorial optimization : packing and covering , 2001 .

[22]  H. P. Williams THEORY OF LINEAR AND INTEGER PROGRAMMING (Wiley-Interscience Series in Discrete Mathematics and Optimization) , 1989 .

[23]  Gary J. Russell,et al.  A Probabilistic Choice Model for Market Segmentation and Elasticity Structure , 1989 .

[24]  Peter W. Glynn,et al.  A Nonparametric Approach to Multiproduct Pricing , 2006, Oper. Res..

[25]  Laurence A. Wolsey,et al.  Valid Linear Inequalities for Fixed Charge Problems , 1985, Oper. Res..

[26]  Venkatesan Guruswami,et al.  On profit-maximizing envy-free pricing , 2005, SODA '05.

[27]  K. Talluri,et al.  The Theory and Practice of Revenue Management , 2004 .