On embedding well-separable graphs

Call a simple graph H of order nwell-separable, if by deleting a separator set of size o(n) the leftover will have components of size at most o(n). We prove, that bounded degree well-separable spanning subgraphs are easy to embed: for every @c>0 and positive integer @D there exists an n"0 such that if n>n"0, @D(H)= =(1-1/2(@g(H)-1)[email protected])n for a simple graph G of order n, then [email protected]?G. We extend our result to graphs with small band-width, too.

[1]  János Komlós,et al.  Spanning Trees in Dense Graphs , 2001, Combinatorics, Probability and Computing.

[2]  L. Moser,et al.  AN EXTREMAL PROBLEM IN GRAPH THEORY , 2001 .

[3]  János Komlós,et al.  Blow-up Lemma , 1997, Combinatorics, Probability and Computing.

[4]  János Komlós,et al.  Proof of the Alon-Yuster conjecture , 2001, Discret. Math..

[5]  János Komlós,et al.  Proof of a Packing Conjecture of Bollobás , 1995, Combinatorics, Probability and Computing.

[6]  Noga Alon,et al.  AlmostH-factors in dense graphs , 1992, Graphs Comb..

[7]  P. Erdös,et al.  On the structure of linear graphs , 1946 .

[8]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[9]  János Komlós,et al.  An algorithmic version of the blow-up lemma , 1998, Random Struct. Algorithms.

[10]  J. Komlos The Blow-up Lemma , 1999, Combinatorics, Probability and Computing.

[11]  Béla Csaba,et al.  On the Bollobás–Eldridge Conjecture for Bipartite Graphs , 2007, Combinatorics, Probability and Computing.

[12]  P. Erdos,et al.  A LIMIT THEOREM IN GRAPH THEORY , 1966 .

[13]  P. Erdös On an extremal problem in graph theory , 1970 .

[14]  Noga Alon,et al.  AlmostH-factors in dense graphs , 1992, Graphs Comb..

[15]  Endre Szemerédi,et al.  Spanning subgraphs of dense graphs and a combinatorial problem on strings , 1998 .

[16]  M. Simonovits,et al.  Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .

[17]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .