Beyond the zero-diffraction regime in optical cavities with a left-handed material

The combination of right-handed and left-handed materials offers the possibility to design devices in which the mean diffraction is zero. Such systems are encountered, for example, in nonlinear optical cavities, where a true zero-diffraction regime could lead to the formation of patterns with arbitrarily small sizes. In practice, the minimal size is limited by nonlocal terms in the equation of propagation. We study the nonlocal properties of light propagation in a nonlinear optical cavity containing a right-handed and a left-handed material. We obtain a model for the propagation, including two sources of nonlocality: the spatial dispersion of the materials in the cavity, and the higher-order terms of the mean field approximation. We apply these results to a particular case and derive an expression for the parameter fixing the minimal size of the patterns.

[1]  V. Agranovich,et al.  VI Crystal Optics with Spatial Dispersion , 1971 .

[2]  Michael Scalora,et al.  Bright and dark gap solitons in a negative index Fabry-Pérot etalon. , 2004, Physical review letters.

[3]  Daniel Sjöberg,et al.  Homogenization of Dispersive Material Parameters for Maxwell's Equations Using a Singular Value Decomposition , 2005, Multiscale Model. Simul..

[4]  Kestutis Staliunas,et al.  Midband dissipative spatial solitons. , 2003, Physical review letters.

[5]  R. Greegor,et al.  Experimental verification and simulation of negative index of refraction using Snell's law. , 2003, Physical review letters.

[6]  A single susceptibility scheme of macroscopic Maxwell equations: beyond the ‘E, D, B, H’ approach , 2008 .

[7]  D. Sjöberg A modified Drude–Born–Fedorov model for isotropic chiral media, obtained by finite scale homogenization , 2008 .

[8]  Yuri S. Kivshar,et al.  Second-harmonic generation in nonlinear left-handed metamaterials , 2006 .

[9]  M. Brereton Classical Electrodynamics (2nd edn) , 1976 .

[10]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[11]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[12]  Irina Veretennicoff,et al.  Miniaturization of photonic waveguides by the use of left-handed materials , 2008 .

[13]  E. Wolf,et al.  Principles of Optics (7th Ed) , 1999 .

[14]  Jan Danckaert,et al.  Dynamical instabilities of dissipative solitons in nonlinear optical cavities with nonlocal materials , 2008 .

[15]  A.C. Newell,et al.  Single-Negative, Double-Negative, and Low-index Metamaterials and their Electromagnetic Applications , 2007, IEEE Antennas and Propagation Magazine.

[16]  J. Danckaert,et al.  Impact of nonlocal interactions in dissipative systems: Towards minimal-sized localized structures , 2007, 0912.1444.

[17]  Influence of nonlinearly induced diffraction on spatial solitary waves , 2000 .

[18]  N. Engheta,et al.  An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability , 2002, IEEE Antennas and Wireless Propagation Letters.

[19]  I. Chuang,et al.  Experimental observations of a left-handed material that obeys Snell's law. , 2003, Physical review letters.

[20]  Yuri S. Kivshar,et al.  Subwavelength imaging with opaque nonlinear left-handed lenses , 2005 .

[21]  David R. Smith,et al.  Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial , 2001 .

[22]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[23]  S. Tretyakov Analytical Modeling in Applied Electromagnetics , 2003 .

[24]  Jan Danckaert,et al.  Dissipative structures in left-handed material cavity optics. , 2007, Chaos.

[25]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[26]  A. P. Vinogradov,et al.  Scaling theory for homogenization of the Maxwell equations. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[27]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[28]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[29]  Eleftherios N. Economou,et al.  Experimental demonstration of negative magnetic permeability in the far-infrared frequency regime , 2006 .

[30]  M. Kafesaki,et al.  Experimental observation of true left-handed transmission peaks in metamaterials. , 2004, Optics letters.

[31]  Lev Davidovich Landau,et al.  Electrodynamique des milieux continus , 1990 .

[32]  V. Agranovich,et al.  Crystal Optics with Spatial Dispersion and Excitons , 1984 .

[33]  R. Herrero,et al.  Subdiffractive light pulses in photonic crystals. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  David R. Smith,et al.  Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations , 2007, 0706.2452.

[35]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[36]  M. Wegener,et al.  Negative-index metamaterial at 780 nm wavelength. , 2006, Optics letters.

[37]  Irina Veretennicoff,et al.  Negative diffraction pattern dynamics in nonlinear cavities with left-handed materials , 2006, 1003.0584.

[38]  R. Baughman,et al.  Linear and nonlinear wave propagation in negative refraction metamaterials , 2003 .

[39]  R. C. Mitchell-Thomas,et al.  Weakly and strongly nonlinear waves in negative phase metamaterials , 2008, NanoScience + Engineering.

[40]  Nick Lazarides,et al.  Coupled nonlinear Schrodinger field equations for electromagnetic wave propagation in nonlinear left-handed materials. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  F Schmidt,et al.  Magnetic metamaterials at telecommunication and visible frequencies. , 2005, Physical review letters.