Scalable Inference for Logistic-Normal Topic Models
暂无分享,去创建一个
Bo Zhang | Jun Zhu | Zi Wang | Xun Zheng | Jianfei Chen | Xun Zheng | Zi Wang | Jun Zhu | Bo Zhang | Jianfei Chen
[1] W. Wong,et al. The calculation of posterior distributions by data augmentation , 1987 .
[2] Alexander J. Smola,et al. Scalable inference in latent variable models , 2012, WSDM '12.
[3] Michael I. Jordan,et al. An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.
[4] C. Robert. Simulation of truncated normal variables , 2009, 0907.4010.
[5] John D. Lafferty,et al. Correlated Topic Models , 2005, NIPS.
[6] James G. Scott,et al. Bayesian Inference for Logistic Models Using Pólya–Gamma Latent Variables , 2012, 1205.0310.
[7] Max Welling,et al. Distributed Algorithms for Topic Models , 2009, J. Mach. Learn. Res..
[8] James G. Scott,et al. Default Bayesian analysis for multi-way tables: a data-augmentation approach , 2011, 1109.4180.
[9] Chong Wang,et al. The Discrete Infinite Logistic Normal Distribution for Mixed-Membership Modeling , 2011, AISTATS.
[10] Alexander J. Smola,et al. An architecture for parallel topic models , 2010, Proc. VLDB Endow..
[11] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[12] Xiao-Li Meng,et al. The Art of Data Augmentation , 2001 .
[13] Andrew McCallum,et al. Gibbs Sampling for Logistic Normal Topic Models with Graph-Based Priors , 2008 .
[14] Bo Zhang,et al. Sparse online topic models , 2013, WWW.
[15] Ning Chen,et al. Generalized Relational Topic Models with Data Augmentation , 2013, IJCAI.
[16] Francis R. Bach,et al. Online Learning for Latent Dirichlet Allocation , 2010, NIPS.
[17] W. Rudin. Principles of mathematical analysis , 1964 .
[18] David B. Dunson,et al. Lognormal and Gamma Mixed Negative Binomial Regression , 2012, ICML.
[19] Andrew McCallum,et al. Efficient methods for topic model inference on streaming document collections , 2009, KDD.
[20] C. Holmes,et al. Bayesian auxiliary variable models for binary and multinomial regression , 2006 .
[21] John D. Lafferty,et al. Dynamic topic models , 2006, ICML.