Image Contrast Measure as a Gloss Material Descriptor

Bidirectional reflectance distribution function provides a physical description of material appearance. In particular, it helps to describe the gloss. We suggest that, at least, one attribute of gloss: Contrast gloss (luster), may be described directly from an image by using local image contrast measurement. In this article, we investigate the relation between image contrast measures, gloss perception and bidirectional reflectance distribution function based on the Ward’s \(\alpha \) model parameter. Although more investigation is required to provide stronger conclusions, it seems that image related contrast measures may provide an indication of gloss perception.

[1]  E. Peli Contrast in complex images. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[2]  Sylvia C Pont,et al.  Highlight shapes and perception of gloss for real and photographed objects. , 2016, Journal of vision.

[3]  D. Tolhurst,et al.  Calculating the contrasts that retinal ganglion cells and LGN neurones encounter in natural scenes , 2000, Vision Research.

[4]  Jeffrey Lubin,et al.  A VISUAL DISCRIMINATION MODEL FOR IMAGING SYSTEM DESIGN AND EVALUATION , 1995 .

[5]  Hans-Peter Seidel,et al.  An intuitive control space for material appearance , 2016, ACM Trans. Graph..

[6]  Michael Pointer,et al.  Measurement of appearance , 2002, Other Conferences.

[7]  Jon Y. Hardeberg,et al.  Measuring perceptual contrast in digital images , 2012, J. Vis. Commun. Image Represent..

[8]  Azeddine Beghdadi,et al.  Pyramidal perceptual filtering using Moon and Spencer contrast , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[9]  R. Hess,et al.  Contrast-coding in amblyopia. I. Differences in the neural basis of human amblyopia , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[10]  J Gottesman,et al.  Symmetry and constancy in the perception of negative and positive luminance contrast. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[11]  J. Kulikowski,et al.  Pattern and flicker detection analysed by subthreshold summation. , 1975, The Journal of physiology.

[12]  Giuseppe Boccignone,et al.  Image contrast enhancement via entropy production , 2004, Real Time Imaging.

[13]  R. W. Kentridge,et al.  The perception of gloss: A review , 2015, Vision Research.

[14]  Alessandro Rizzi,et al.  A proposal for Contrast Measure in Digital Images , 2004, CGIV.

[15]  P. Whittle Increments and decrements: Luminance discrimination , 1986, Vision Research.

[16]  Gregory J. Ward,et al.  Measuring and modeling anisotropic reflection , 1992, SIGGRAPH.

[17]  Alessandro Rizzi,et al.  Evaluation of contrast measures in relation to observers perceived contrast , 2008, CGIV/MCS.

[18]  Michael R. Peres,et al.  Focal encyclopedia of photography : digital imaging, theory and applications, history, and science , 2007 .

[19]  A. Valberg Light Vision Color , 2005 .

[20]  Jon Y. Hardeberg,et al.  Attributes of image quality for color prints , 2010, J. Electronic Imaging.

[21]  Terry Caelli,et al.  Encoding Visual Information Using Anisotropic Transformations , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Albert A. Michelson,et al.  Studies in Optics , 1995 .

[23]  Michael R. Pointer,et al.  Toward the soft metrology of surface gloss: A review , 2014 .

[24]  R. S. Hunter,et al.  Methods of determining gloss , 1937 .

[25]  J WardGregory,et al.  Measuring and modeling anisotropic reflection , 1992 .

[26]  Alessandro Rizzi,et al.  The Art and Science of HDR Imaging: McCann/The Art and Science of HDR Imaging , 2011 .

[27]  Edward H. Adelson,et al.  PYRAMID METHODS IN IMAGE PROCESSING. , 1984 .