From Atoms to Autos - A new Design Paradigm Using Microstructure-Property Modeling Part 1: Monotonic Loading Conditions

A multiscale analysis was performed to develop a macroscale microstructure-mechanical property model that includes several types of microstructural inclusions found in an A356-T6 cast aluminum alloy for use in automotive chassis component design. This microstructureproperty model can be used for finite element analysis in which the deformation history, temperature dependence, and strain rate dependence vary. To capture the history effects from the boundary conditions and load histories, the microstructural defects and progression of damage from these defects and microstructural features such as casting porosity, silicon particles, and intermetallics must be reflected in the model. Internal state variables are used in the material model to reflect void/crack nucleation, void growth, and void coalescence from the casting microstructural features under different temperatures, strain rates, and deformation paths. Furthermore, internal state variables are used to reflect the dislocation density evolution that affects the work hardening rate and thus stress state under different temperatures and strain rates. In order to determine the pertinent effects of the microstructural features, several different length scale analyses were performed. Once the pertinent microstructural features were determined and included in the microstructure-mechanical property model, tests were performed on a control arm to validate its precision. Very encouraging results were demonstrated when using the model for optimizing structural components in a predictive fashion.

[1]  P. E. Nielan,et al.  ANTIPASTO: An interactive mesh generator and preprocessor for two-dimensional analysis programs , 1990 .

[2]  Stuart H. Young An optimization technique using the finite element method and orthogonal arrays , 1996 .

[3]  Viggo Tvergaard,et al.  Toughness of an interface along a thin ductile layer joining elastic solids , 1994 .

[4]  T. B. Cox,et al.  An investigation of the plastic fracture of AISI 4340 and 18 Nickel-200 grade maraging steels , 1974, Metallurgical and Materials Transactions B.

[5]  A. B. Geltmacher,et al.  A modeling study of the effect of stress state on void linking during ductile fracture , 1996 .

[6]  Mark F. Horstemeyer,et al.  Modeling stress state dependent damage evolution in a cast Al–Si–Mg aluminum alloy , 2000 .

[7]  Arun M. Gokhale,et al.  Efficient measurement of microstructural surface area using trisector , 1994 .

[8]  W. Nix,et al.  A comparison of the dimple spacing on intergranular creep fracture surfaces with the slip band spacing for copper , 1980 .

[9]  Xiaopeng Xu,et al.  Numerical simulations of dynamic interfacial crack growth allowing for crack growth away from the bond line , 1996 .

[10]  Joshua R. Smith,et al.  Universal binding energy curves for metals and bimetallic interfaces , 1981 .

[11]  Y. Yoshino,et al.  Structure and Bond Strength of a Copper–Alumina Interface , 1992 .

[12]  F. A. McClintock,et al.  A Criterion for Ductile Fracture by the Growth of Holes , 1968 .

[13]  Quantitative characterization of spatial arrangement of micropores in cast microstructures , 1998 .

[14]  G. Smith,et al.  FRACTURE OF INTERNALLY OXIDIZED COPPER ALLOYS. , 1968 .

[15]  A. Evans,et al.  Effects of plasticity on the crack propagation resistance of a metal/ceramic interface , 1990 .

[16]  J. S. Hunter,et al.  Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building. , 1979 .

[17]  K. Puttick Ductile fracture in metals , 1959 .

[18]  Paul A. Wawrzynek,et al.  Simulation of the fracture process in rock with application to hydrofracturing , 1986 .

[19]  A. Needleman Micromechanical modelling of interfacial decohesion , 1992 .

[20]  D. M. Tracey,et al.  On the ductile enlargement of voids in triaxial stress fields , 1969 .

[21]  James R. Rice,et al.  Embrittlement of interfaces by solute segregation , 1989 .

[22]  Alan Needleman,et al.  Void nucleation effects on shear localization in porous plastic solids , 1982 .

[23]  Zhigang Suo,et al.  Crack Deflection at an Interface Between Two Orthotopic Media , 1992 .

[24]  Xiaopeng Xu,et al.  Numerical simulations of dynamic crack growth along an interface , 1996 .

[25]  A. C. Mackenzie,et al.  On the influence of state of stress on ductile failure initiation in high strength steels , 1977 .

[26]  George A. Papadopoulos Dynamic crack-bifurcation by the Det.-criterion , 1988 .

[27]  M. Stoneham,et al.  The Shell Model and Interatomic Potentials for Ceramics , 1996 .

[28]  Viggo Tvergaard,et al.  An analysis of ductile rupture in notched bars , 1984 .

[29]  Elias C. Aifantis,et al.  A damage model for ductile metals , 1989 .

[30]  A. Needleman Void Growth in an Elastic-Plastic Medium , 1972 .

[31]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[32]  R. Sowerby,et al.  The influence of void distribution on the yielding of an elastic-plastic porous solid , 1993 .

[33]  F. Montheillet,et al.  Damage in a viscoplastic material part I: Cavity growth , 1996 .

[34]  Jean-Baptiste Leblond,et al.  Approximate models for ductile metals containing non-spherical voids—Case of axisymmetric prolate ellipsoidal cavities , 1993 .

[35]  Sia Nemat-Nasser,et al.  On finite plastic flows of compressible materials with internal friction , 1980 .

[36]  J. Nemes,et al.  Constitutive modeling of the dynamic fracture of smooth tensile bars , 1993 .

[37]  D. McDowell,et al.  The Effect of Stress-State on the Large Strain Inelastic Deformation Behavior of 304L Stainless Steel , 1996 .

[38]  A. K. Pilkey,et al.  Modeling void nucleation and growth within periodic clusters of particles , 1998 .

[39]  Xiaopeng Xu,et al.  Effect of inhomogeneities on dynamic crack growth in an elastic solid , 1997 .

[40]  R. H. Stone,et al.  Use of Fractography and Sectioning Techniques to Study Fracture Mechanisms , 1976 .

[41]  M. Ortiz,et al.  Formulation of implicit finite element methods for multiplicative finite deformation plasticity , 1990 .

[42]  H. Poorooshasb Description of flow of sand using state parameters , 1989 .

[43]  M. Mear On the plastic yielding of porous metals , 1990 .

[44]  Donald A. Koss,et al.  Ductile failure as a result of a void-sheet instability: experiment and computational modeling , 1998 .

[45]  S. Ramaswamy Finite element implementation of gradient plasticity models , 1997 .

[46]  H. D. Hibbitt,et al.  ABAQUS/EPGEN–A GENERAL PURPOSE FINITE ELEMENT CODE WITH EMPHASIS ON NONLINEAR APPLICATIONS , 1984 .

[47]  A. Evans,et al.  Crack progression and interface debonding in brittle/ductile nanoscale multilayers , 1995 .

[48]  John W. Hutchinson,et al.  On crack path selection and the interface fracture energy in bimaterial systems , 1989 .

[49]  Mark F. Horstemeyer,et al.  A void–crack nucleation model for ductile metals , 1999 .

[50]  M. E. Kipp,et al.  Theory of spall damage accumulation in ductile metals , 1977 .

[51]  V. Tvergaard On localization in ductile materials containing spherical voids , 1982, International Journal of Fracture.

[52]  A. Needleman An analysis of tensile decohesion along an interface , 1990 .

[53]  A. Rosenfield Criteria for ductile fracture of two-phase alloys , 1968 .

[54]  Viggo Tvergaard,et al.  Effects of nonlocal damage in porous plastic solids , 1995 .

[55]  M. Horstemeyer,et al.  High temperature sensitivity of notched AISI 304L stainless steel tests , 1998 .

[56]  Jean-Baptiste Leblond,et al.  Approximate Models for Ductile Metals Containing Nonspherical Voids—Case of Axisymmetric Oblate Ellipsoidal Cavities , 1994 .

[57]  Björn Brickstad A viscoplastic analysis of rapid crack propagation experiments in steel , 1983 .

[58]  M. F. Ashby,et al.  On creep fracture by void growth , 1982 .

[59]  Jun Sun Effect of stress triaxiality on micro-mechanisms of void coalesence and micro-fracture ductility of materials , 1991 .

[60]  N. Fleck,et al.  Dynamic crack growth across an interface , 1997 .

[61]  G. T. Hahn,et al.  Metallurgical factors affecting fracture toughness of aluminum alloys , 1975 .

[62]  J. Rice,et al.  CONDITIONS FOR THE LOCALIZATION OF DEFORMATION IN PRESSURE-SENSITIVE DILATANT MATERIALS , 1975 .

[63]  A. A. Lebedev,et al.  Dependence of the yield point of polymer materials on hydrostatic pressure and certain plasticity criteria , 1983 .

[64]  V. Gupta,et al.  Calculation, Measurement, and Control of Interface Strength in Composites , 1993 .

[65]  F. Rebillat,et al.  Microcomposite Test Procedure for Evaluating the Interface Properties of Ceramic Matrix Composites , 1995 .

[66]  Douglas J. Bammann,et al.  Modeling Temperature and Strain Rate Dependent Large Deformations of Metals , 1990 .

[67]  Michael F. Ashby,et al.  Intergranular fracture during power-law creep , 1979 .

[68]  J. Eftis,et al.  Evolution equation for the void volume growth rate in a viscoplastic-damage constitutive model , 1991 .

[69]  Mark F. Horstemeyer,et al.  On Factors Affecting Localization and Void Growth in Ductile Metals: A Parametric Study , 2000 .

[70]  D. Benson The effects of void cluster size on ductile fracture , 1995 .

[71]  J. Im,et al.  Cavity formation from inclusions in ductile fracture , 1975 .

[72]  Chandrakant S. Desai,et al.  A hierarchical approach for constitutive modelling of geologic materials , 1986 .

[73]  M. Ashby Work hardening of dispersion-hardened crystals , 1966 .

[74]  R. Hixson,et al.  Quantitative Analysis of Damage Clustering and Void Linking for Spallation Modeling in Tantalum , 1997 .

[75]  Percy Williams Bridgman,et al.  The Compressibility of Thirty Metals as a Function of Pressure and Temperature , 1923 .

[76]  M. Ortiz,et al.  A material‐independent method for extending stress update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics , 1992 .

[77]  M. Kanninen,et al.  Advanced Fracture Mechanics , 1986 .

[78]  A. Cocks Inelastic deformation of porous materials , 1989 .

[79]  Ivar E. Reimanis,et al.  The fracture resistance of a model metal/ceramic interface , 1991 .

[80]  V. Tvergaard Material failure by void coalescence in localized shear bands , 1982 .

[81]  M. Kendall Statistical Methods for Research Workers , 1937, Nature.

[82]  J. R. Griffiths,et al.  The influence of microstructure on the Bauschinger effect in an AlSiMg casting alloy , 1996 .

[83]  Arun M. Gokhale,et al.  Unbiased estimation of curve length in 3‐D using vertical slices , 1990 .

[84]  Jean-Baptiste Leblond,et al.  An improved Gurson-type model for hardenable ductile metals , 1995 .

[85]  J. Nemes,et al.  Viscoplastic analysis of plate-impact spallation☆ , 1991 .

[86]  M. Ortiz,et al.  Effect of interfacial compliance on bifurcation of a layer bonded to a substrate , 1997 .

[87]  Michael F. Ashby,et al.  Intergranular fracture at elevated temperature , 1975 .

[88]  G. P. Tandon,et al.  Elastic moduli for a class of porous materials , 1989 .

[89]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[90]  Jacques Janssen Applied stochastic models and data analysis. Special Issue on Finance , 1992 .

[91]  Iwona M Jasiuk,et al.  Crack initiation and propagation in materials with randomly distributed holes , 1997 .

[92]  Toshio Mura,et al.  The Elastic Field Outside an Ellipsoidal Inclusion , 1977 .

[93]  Alan Needleman,et al.  Void growth and coalescence in porous plastic solids , 1988 .

[94]  David J. Benson,et al.  An analysis of void distribution effects on the dynamic growth and coalescence of voids in ductile metals , 1993 .

[95]  M. M. Carroll,et al.  Compaction equations for strain hardening porous materials , 1987 .

[96]  A. Needleman,et al.  Evolution of Void Shape and Size in Creeping Solids , 1995 .

[97]  Torsional Softening and the Forming Limit Diagram , 1996 .

[98]  A. B. Geltmacher,et al.  Flow localization in sheet specimens with pairs of holes , 1998 .

[99]  John W. Hutchinson,et al.  Void Growth and Collapse in Viscous Solids , 1982 .

[100]  M. Avrami,et al.  Kinetics of Phase Change 2 , 1940 .

[101]  R. J. Pick,et al.  Void growth and coalescence during high velocity impact , 1995 .

[102]  A. Gysler,et al.  Deformation behavior of age-hardened Ti-Mo alloys , 1974 .

[103]  J. R. Fisher,et al.  Void nucleation in spheroidized carbon steels Part 1: Experimental , 1981 .

[104]  Isaac M Daniel,et al.  Engineering Mechanics of Composite Materials , 1994 .

[105]  J. Rice Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity , 1971 .

[106]  I. French,et al.  The influence of hydrostatic pressure on the tensile deformation of a spheroidised 0.5% steel , 1974 .

[107]  Günther Meschke,et al.  A new class of algorithms for classical plasticity extended to finite strains. Application to geomaterials , 1993 .

[108]  R. Stephens,et al.  Fracture Toughness of A356-T6 Cast Aluminum Alloy , 1988 .

[109]  M. Zaidman,et al.  Constitutive models for porous materials with evolving microstructure , 1994 .

[110]  A. Evans,et al.  Design, analysis and application of an improved push-through test for the measurement of interface properties in composites , 1992 .

[111]  CRITICAL MECHANISMS IN THE DEVELOPMENT OF FATIGUE CRACKS IN 2024-T4 ALUMINUM. , 1968 .

[112]  Zhigang Suo,et al.  Stability of solids with interfaces , 1992 .

[113]  S. Nemat-Nasser,et al.  A plasticity model for flow of granular materials under triaxial stress states , 1982 .

[114]  D. McDowell,et al.  The debonding and fracture of Si particles during the fatigue of a cast Al-Si alloy , 1999 .

[115]  John R. Smith,et al.  Universal features of bonding in metals , 1983 .

[116]  Estimation of integral mixed surface curvature from vertical metallographic sections , 1998 .

[117]  R. Becker,et al.  Effect of Yield Surface Curvature on Necking and Failure in Porous Plastic Solids , 1986 .

[118]  Asim Tewari,et al.  MODELING OF NON-UNIFORM SPATIAL ARRANGEMENT OF FIBERS IN A CERAMIC MATRIX COMPOSITE , 1997 .

[119]  J. Yeh,et al.  The cracking mechanism of silicon particles in an A357 aluminum alloy , 1996 .

[120]  R. Arsenault,et al.  Metal Matrix Composites: Processing and Interfaces , 1991 .

[121]  G. Papadopoulos,et al.  CRACK INITIATION UNDER BIAXIAL LOADING WITH HIGHER-ORDER APPROXIMATION , 1989 .

[122]  J. F. Knott,et al.  The Initiation and Propagation of Ductile Fracture in Low Strength Steels , 1976 .

[123]  F. Erdogan,et al.  Stress Distribution in a Nonhomogeneous Elastic Plane With Cracks , 1963 .

[124]  J. Hutchinson,et al.  The relation between crack growth resistance and fracture process parameters in elastic-plastic solids , 1992 .

[125]  V. Tvergaard Material Failure by Void Growth to Coalescence , 1989 .

[126]  Ulf Ståhlberg,et al.  The effect of void size and distribution on ductile fracture , 1980 .

[127]  D. Koss,et al.  The effect of void arrays on void linking during ductile fracture , 1988 .

[128]  J. Gurland,et al.  THE MECHANISM OF DUCTILE RUPTURE OF METALS CONTAINING INCLUSIONS , 1963 .

[129]  J. R. Griffiths,et al.  The deformation and fracture behaviour of an AlSiMg casting alloy , 1995 .

[130]  Chandrakant S. Desai,et al.  Constitutive laws for engineering materials, with emphasis on geologic materials , 1984 .

[131]  A. Needleman,et al.  Nonlocal effects on localization in a void-sheet , 1997 .

[132]  A. Evans,et al.  Effects of fiber roughness on interface sliding in composites , 1992 .

[133]  Viggo Tvergaard,et al.  On the toughness of ductile adhesive joints , 1996 .

[134]  M. Gurtin,et al.  Thermodynamics with Internal State Variables , 1967 .

[135]  F. H. Samuel,et al.  A metallographic study of porosity and fracture behavior in relation to the tensile properties in 319.2 end chill castings , 1995 .

[136]  K. Chan The constitutive representation of high-temperature creep damage , 1988 .

[137]  Yong-Shin Lee,et al.  Modeling ductile void growth in viscoplastic materials—Part I: Void growth model , 1993 .

[138]  E. Kearsley Note: Strain Invariants Expressed as Average Stretches , 1989 .

[139]  Viggo Tvergaard,et al.  Ductile fracture by cavity nucleation between larger voids , 1982 .

[140]  M. Baskes,et al.  Modified embedded-atom potentials for cubic materials and impurities. , 1992, Physical review. B, Condensed matter.

[141]  Arun M. Gokhale,et al.  Computer simulation of spatial arrangement and connectivity of particles in three-dimensional microstructure: Application to model electrical conductivity of polymer matrix composite , 1996 .

[142]  A. Gokhale,et al.  Relationship between microstructural extremum and fracture path in a cast Al-Si-Mg alloy , 1997 .

[143]  N. Moody,et al.  The role of inclusion and pore content on the fracture toughness of powder-processed blended elemental titanium alloys , 1993 .

[144]  F. Delannay,et al.  Experimental and numerical comparison of void growth models and void coalescence criteria for the prediction of ductile fracture in copper bars , 1998 .

[145]  D. Brenner Chemical Dynamics and Bond-Order Potentials , 1996 .

[146]  R. McMeeking,et al.  Void Growth in Elastic-Plastic Materials , 1989 .

[147]  G. Weng Anisotropic hardening in single crystals and the plasticity of polycrystals , 1987 .

[148]  L M Cruz-Orive,et al.  Estimation of surface area from vertical sections , 1986, Journal of microscopy.

[149]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[150]  V. Loboda Analytical derivation and investigation of the interface crack models , 1998 .

[151]  R. Asaro,et al.  Geometrical effects in the inhomogeneous deformation of ductile single crystals , 1979 .

[152]  A. Needleman An analysis of decohesion along an imperfect interface , 1990 .

[153]  R. Asaro,et al.  Correlation of microstructure and fracture toughness in two 4340 steels , 1985 .

[154]  P. Perzyna Constitutive Modeling of Dissipative Solids for Postcritical Behavior and Fracture , 1984 .

[155]  J. P. Hirth,et al.  Analysis of cavity nucleation in solids subjected to external and internal stresses , 1985 .

[156]  Smith,et al.  Theory of the bimetallic interface. , 1985, Physical review. B, Condensed matter.

[157]  Mark F. Horstemeyer,et al.  Stress History Dependent Localization and Failure Using Continuum Damage Mechanics Concepts , 1997 .

[158]  Arun M. Gokhale,et al.  Application of image analysis for characterization of spatial arrangements of features in microstructure , 1995 .

[159]  J. Rice,et al.  Limits to ductility set by plastic flow localization , 1978 .

[160]  D. Broek The role of inclusions in ductile fracture and fracture toughness , 1973 .

[161]  W. Garrison The effect of silicon and nickel additions on the sulfide spacing and fracture toughness of a 0.4 carbon low alloy steel , 1986 .

[162]  Jonas Faleskog,et al.  Micromechanics of coalescence—I. Synergistic effects of elasticity, plastic yielding and multi-size-scale voids , 1997 .

[163]  Murray S. Daw,et al.  The embedded-atom method: a review of theory and applications , 1993 .

[164]  Martin L. Dunn,et al.  Fracture initiation at sharp notches in single crystal silicon , 1998 .

[165]  A. Evans,et al.  Interface cracking phenomena in constrained metal layers , 1996 .

[166]  M. Ashby,et al.  Strain gradient plasticity: Theory and experiment , 1994 .

[167]  Michael I. Baskes,et al.  Atomistic calculations of composite interfaces , 1994 .

[168]  Y. K. Lee A finite elastoplastic flow theory for porous media , 1988 .

[169]  G. T. Hahn,et al.  Fracture Toughness of Materials , 1972 .

[170]  J. Rice,et al.  Plane Problems of Cracks in Dissimilar Media , 1965 .

[171]  J. I The Design of Experiments , 1936, Nature.

[172]  A. Evans,et al.  An experimental study of the mechanisms of crack extension along an oxide/metal interface , 1996 .

[173]  Mark F. Horstemeyer,et al.  Atomistic Finite Deformation Simulations: A Discussion on Length Scale Effects in Relation to Mechanical Stresses , 1999 .

[174]  W. Garrison,et al.  Comparison of void nucleation and growth at MnS and Ti2CS inclusions in HY180 steel , 1989 .

[175]  Y. Nishida,et al.  Shear strength at the interface between aluminum and ceramics in model composites fabricated by squeeze casting , 1996 .

[176]  Z. Mroz,et al.  On the criterion of damage evolution for variable multiaxial stress states , 1998 .

[177]  J. Lankford,et al.  Initiation of fatigue cracks in 4340 steel , 1973 .