Homogenization of stiff inclusions through network approximation

We investigate the homogenization of inclusions of infinite conductivity, randomly stationary distributed inside a homogeneous conducting medium. A now classical result by Zhikov shows that, under a logarithmic moment bound on the inter-particle distance, an effective model with finite homogeneous conductivity exists. Relying on ideas from network approximation, we provide a relaxed criterion ensuring homogenization. Several examples not covered by the previous theory are discussed.

[1]  Mitia Duerinckx Effective viscosity of random suspensions without uniform separation , 2020, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.

[2]  L. Modica,et al.  Nonlinear Stochastic Homogenization , 1986 .

[3]  Leonid Berlyand,et al.  Network Approximation in the Limit of¶Small Interparticle Distance of the¶Effective Properties of a High-Contrast¶Random Dispersed Composite , 2001 .

[4]  D. Gérard-Varet,et al.  COMPUTATION OF THE DRAG FORCE ON A SPHERE CLOSE TO A WALL THE ROUGHNESS ISSUE , 2012 .

[5]  Alexander Panchenko,et al.  Network Approximation for Effective Viscosity of Concentrated Suspensions with Complex Geometry , 2005, SIAM J. Math. Anal..

[6]  Joseph B. Keller,et al.  A Theorem on the Conductivity of a Composite Medium , 1964 .

[7]  Barbara Niethammer,et al.  A Local Version of Einstein's Formula for the Effective Viscosity of Suspensions , 2019, SIAM J. Math. Anal..

[8]  G. Leoni A First Course in Sobolev Spaces , 2009 .

[9]  P. Kuchment,et al.  Introduction to Quantum Graphs , 2012 .

[10]  Matthieu Hillairet,et al.  Analysis of the Viscosity of Dilute Suspensions Beyond Einstein’s Formula , 2019, Archive for Rational Mechanics and Analysis.

[11]  Habib Ammari,et al.  Effective viscosity properties of dilute suspensions of arbitrarily shaped particles , 2012, Asymptot. Anal..

[12]  Brian M. Haines,et al.  A Proof of Einstein's Effective Viscosity for a Dilute Suspension of Spheres , 2011, SIAM J. Math. Anal..

[14]  Alexei Novikov,et al.  Error of the Network Approximation for Densely Packed Composites with Irregular Geometry , 2002, SIAM J. Math. Anal..

[15]  Sijue Wu,et al.  Homogenization of Differential Operators , 2002 .

[16]  Penn State INCREASE AND DECREASE OF THE EFFECTIVE CONDUCTIVITY OF TWO PHASE COMPOSITES DUE TO POLYDISPERSITY , 2022 .

[17]  Alexei Novikov,et al.  Introduction to the Network Approximation Method for Materials Modeling , 2013 .

[18]  Alexei Novikov,et al.  Fictitious Fluid Approach and Anomalous Blow-up of the Dissipation Rate in a Two-Dimensional Model of Concentrated Suspensions , 2009 .

[20]  On Einstein's effective viscosity formula. , 2020, 2008.03837.

[21]  D. Gérard-Varet Derivation of the Batchelor-Green formula for random suspensions , 2020, 2008.06324.

[22]  B. Błaszczyszyn Lecture Notes on Random Geometric Models --- Random Graphs, Point Processes and Stochastic Geometry , 2017 .

[23]  Robin Wilson,et al.  Modern Graph Theory , 2013 .

[24]  U. Krengel,et al.  Ergodic theorems for superadditive processes. , 1981 .

[25]  Liliana Borcea,et al.  Network Approximation for Transport Properties of High Contrast Materials , 1998, SIAM J. Appl. Math..

[26]  Leonid Berlyand,et al.  Strong and weak blow-up of the viscous dissipation rates for concentrated suspensions , 2007, Journal of Fluid Mechanics.

[27]  Matthieu Hillairet,et al.  Effective viscosity of a polydispersed suspension , 2019, Journal de Mathématiques Pures et Appliquées.

[28]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[29]  A. Gloria,et al.  Corrector Equations in Fluid Mechanics: Effective Viscosity of Colloidal Suspensions , 2019, Archive for Rational Mechanics and Analysis.