Conformal Wasserstein distance: II. computational aspects and extensions
暂无分享,去创建一个
[1] M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .
[2] Ron Kimmel,et al. Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.
[3] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[4] Panos M. Pardalos,et al. Quadratic Assignment Problem , 1997, Encyclopedia of Optimization.
[5] Yehoshua Y. Zeevi,et al. The farthest point strategy for progressive image sampling , 1997, IEEE Trans. Image Process..
[6] I. Daubechies,et al. Conformal Wasserstein distances: Comparing surfaces in polynomial time , 2011, 1103.4408.
[7] B. D. Adelstein,et al. Calculus of Nonrigid Surfaces for Geometry and Texture Manipulation , 2007 .
[8] K. Polthier,et al. On the convergence of metric and geometric properties of polyhedral surfaces , 2007 .
[9] T. Funkhouser,et al. Möbius voting for surface correspondence , 2009, SIGGRAPH 2009.
[10] A. Dale,et al. High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.
[11] K. Polthier. Computational Aspects of Discrete Minimal Surfaces , 2002 .
[12] G. Burton. TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .
[13] Eranda Çela,et al. The quadratic assignment problem : theory and algorithms , 1999 .
[14] G. Dziuk. Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .
[15] S. Yau,et al. Global conformal surface parameterization , 2003 .
[16] Mikael Fortelius,et al. High-level similarity of dentitions in carnivorans and rodents , 2007, Nature.
[17] C. Villani,et al. Optimal Transportation and Applications , 2003 .
[18] P. Billingsley,et al. Convergence of Probability Measures , 1969 .
[19] George S. Springer,et al. Introduction to Riemann Surfaces , 1959 .
[20] Ulrich Pinkall,et al. Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..
[21] C. Villani. Topics in Optimal Transportation , 2003 .
[22] L. Kantorovich. On the Translocation of Masses , 2006 .
[23] Alexander M. Bronstein,et al. Efficient Computation of Isometry-Invariant Distances Between Surfaces , 2006, SIAM J. Sci. Comput..
[24] Alexander M. Bronstein,et al. Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.
[25] Wei Zeng,et al. 3D Non-rigid Surface Matching and Registration Based on Holomorphic Differentials , 2008, ECCV.
[26] Leonidas J. Guibas,et al. The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.
[27] Guillermo Sapiro,et al. A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data , 2005, Found. Comput. Math..