Conformal Wasserstein distance: II. computational aspects and extensions

This paper is a companion paper to [Lipman and Daubechies 2011]. We provide numerical procedures and algorithms for computing the alignment of and distance between two disk type surfaces. We provide a convergence analysis of the discrete approximation to the arising mass-transportation problems. We furthermore generalize the framework to support sphere-type surfaces, and prove a result connecting this distance to local geodesic distortion. Lastly, we provide numerical experiments on several surfaces' datasets and compare to state of the art method.

[1]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[2]  Ron Kimmel,et al.  Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[3]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[4]  Panos M. Pardalos,et al.  Quadratic Assignment Problem , 1997, Encyclopedia of Optimization.

[5]  Yehoshua Y. Zeevi,et al.  The farthest point strategy for progressive image sampling , 1997, IEEE Trans. Image Process..

[6]  I. Daubechies,et al.  Conformal Wasserstein distances: Comparing surfaces in polynomial time , 2011, 1103.4408.

[7]  B. D. Adelstein,et al.  Calculus of Nonrigid Surfaces for Geometry and Texture Manipulation , 2007 .

[8]  K. Polthier,et al.  On the convergence of metric and geometric properties of polyhedral surfaces , 2007 .

[9]  T. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, SIGGRAPH 2009.

[10]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[11]  K. Polthier Computational Aspects of Discrete Minimal Surfaces , 2002 .

[12]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[13]  Eranda Çela,et al.  The quadratic assignment problem : theory and algorithms , 1999 .

[14]  G. Dziuk Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .

[15]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[16]  Mikael Fortelius,et al.  High-level similarity of dentitions in carnivorans and rodents , 2007, Nature.

[17]  C. Villani,et al.  Optimal Transportation and Applications , 2003 .

[18]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[19]  George S. Springer,et al.  Introduction to Riemann Surfaces , 1959 .

[20]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[21]  C. Villani Topics in Optimal Transportation , 2003 .

[22]  L. Kantorovich On the Translocation of Masses , 2006 .

[23]  Alexander M. Bronstein,et al.  Efficient Computation of Isometry-Invariant Distances Between Surfaces , 2006, SIAM J. Sci. Comput..

[24]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[25]  Wei Zeng,et al.  3D Non-rigid Surface Matching and Registration Based on Holomorphic Differentials , 2008, ECCV.

[26]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[27]  Guillermo Sapiro,et al.  A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data , 2005, Found. Comput. Math..