Macdonald cumulants, G-inversion polynomials and G-parking functions

Abstract We prove a combinatorial formula for Macdonald cumulants which generalizes the celebrated formula of Haglund, Haiman and Loehr for Macdonald polynomials. We provide several applications of our formula. Firstly, it allows us to give a new, constructive proof of a strong factorization property of Macdonald polynomials proven recently by the author of this paper. Moreover, we prove that Macdonald cumulants are q , t -positive in the monomial and in the fundamental quasisymmetric bases. Furthermore, we use our formula to prove the recent higher-order Macdonald positivity conjecture for the coefficients of the Schur polynomials indexed by hooks. Our combinatorial formula relates Macdonald cumulants to the generating function of G -parking functions, or equivalently to a certain specialization of the Tutte polynomials.

[1]  James Haglund,et al.  The Delta Conjecture , 2015, Discrete Mathematics & Theoretical Computer Science.

[2]  T. Tao,et al.  The honeycomb model of _{}(ℂ) tensor products I: Proof of the saturation conjecture , 1999 .

[3]  Alain Lascoux,et al.  Hecke algebras at roots of unity and crystal bases of quantum affine algebras , 1996 .

[4]  Thomas Lam,et al.  Schur positivity and Schur log-concavity , 2005 .

[5]  Guoce Xin,et al.  Compositional (km,kn)-Shuffle Conjectures , 2014, 1404.4616.

[6]  Asymptotics of q-plancherel measures , 2010, 1001.2180.

[7]  Valentin F'eray,et al.  GAUSSIAN FLUCTUATIONS OF YOUNG DIAGRAMS AND STRUCTURE CONSTANTS OF JACK CHARACTERS , 2014, 1402.4615.

[8]  I. G. MacDonald,et al.  A new class of symmetric functions. , 1988 .

[9]  Ira M. Gessel,et al.  The Tutte polynomial of a graph, depth-first search, and simplicial complex partitions , 1996, Electron. J. Comb..

[10]  Maciej Dolkega Strong factorization property of Macdonald polynomials and higher-order Macdonald's positivity conjecture , 2016, 1609.09686.

[11]  Daniel R. L. Brown,et al.  A rooted map invariant, non-orientability and Jack symmetric functions , 2007, J. Comb. Theory, Ser. B.

[12]  Piotr Śniady,et al.  Gaussian fluctuations of Jack-deformed random Young diagrams , 2017, Probability Theory and Related Fields.

[13]  Erik Carlsson,et al.  A proof of the shuffle conjecture , 2015, 1508.06239.

[14]  L. Croix,et al.  The combinatorics of the Jack parameter and the genus series for topological maps , 2009 .

[15]  William T. Tutte A Ring in Graph Theory , 1947 .

[16]  Mark Haiman,et al.  Hilbert schemes, polygraphs and the Macdonald positivity conjecture , 2000, math/0010246.

[17]  W. T. Tutte,et al.  A Contribution to the Theory of Chromatic Polynomials , 1954, Canadian Journal of Mathematics.

[18]  Michelle L. Wachs,et al.  Chromatic quasisymmetric functions and Hessenberg varieties , 2011, 1106.4287.

[19]  Maciej Dolega Top Degree Part in $b$-Conjecture for Unicellular Bipartite Maps , 2017, Electron. J. Comb..

[20]  Ricky Ini Liu,et al.  Flow Polytopes and the Space of Diagonal Harmonics , 2016, Canadian Journal of Mathematics.

[21]  Mark Haiman,et al.  Notes on Macdonald Polynomials and the Geometry of Hilbert Schemes , 2002 .

[22]  G. Lusztig Green polynomials and singularities of unipotent classes , 1981 .

[23]  Nicholas A. Loehr,et al.  A combinatorial formula for Macdonald polynomials , 2005 .

[24]  V. Gorin,et al.  Fluctuations of particle systems determined by Schur generating functions , 2016, Advances in Mathematics.

[25]  A. Garsia,et al.  A graded representation model for Macdonald's polynomials. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Ira M. Gessel Enumerative applications of a decomposition for graphs and digraphs , 1995, Discret. Math..

[27]  Alexander Postnikov,et al.  Trees, parking functions, syzygies, and deformations of monomial ideals , 2003 .

[28]  Ian P. Goulden,et al.  Connection coefficients, matchings, maps and combinatorial conjectures for Jack symmetric functions , 1996 .

[29]  Matthieu Josuat-Vergès Cumulants of the q-semicircular Law, Tutte Polynomials, and Heaps , 2012, Canadian Journal of Mathematics.

[30]  A. Wilson A weighted sum over generalized Tesler matrices , 2015, 1510.02684.

[31]  Piotr Śniady Gaussian fluctuations of characters of symmetric groups and of Young diagrams , 2006 .

[32]  J. B. Remmel,et al.  A combinatorial formula for the character of the diagonal coinvariants , 2003, math/0310424.

[33]  Criel Merino López Chip firing and the tutte polynomial , 1997 .

[34]  Valentin Féray Asymptotic behavior of some statistics in Ewens random permutations , 2012, 1201.2157.

[35]  Combinatorics of Tesler matrices in the Theory of Parking Functions and Diagonal Harmonics , 2012 .

[36]  Ekaterina A. Vassilieva,et al.  On the Matchings-Jack Conjecture for Jack Connection Coefficients Indexed by Two Single Part Partitions , 2016, Electron. J. Comb..

[37]  A. Borodin,et al.  Macdonald processes , 2011, Probability Theory and Related Fields.

[38]  Anton Mellit Toric braids and (m,n)-parking functions , 2021, Duke Mathematical Journal.