The classification of rational preperiodic points of quadratic polynomials over ${\Bbb Q}$: a refined conjecture
暂无分享,去创建一个
[1] C. Woodcock. LOCAL FIELDS (London Mathematical Society Student Texts 3) , 1987 .
[2] D. Lewis. Invariant sets of morphisms on projective and affine number spaces , 1972 .
[3] Gregory S. Call,et al. Canonical heights on varieties with morphisms , 1993 .
[4] B. Poonen. Torsion in rank 1 Drinfeld modules and the uniform boundedness conjecture , 1995, math/9507217.
[5] E. V. Flynn. The group law on the jacobian of a curve of genus 2. , 1993 .
[6] D. G. Northcott,et al. Periodic Points on an Algebraic Variety , 1950 .
[7] Joseph H. Silverman,et al. Rational periodic points of rational functions , 1994 .
[8] On Exceptional Points on Cubic Curves , 1940 .
[9] A. Ogg. Rational points of finite order on elliptic curves , 1971 .
[10] Points of order 13 on elliptic curves , 1973 .
[11] Patrick Morton,et al. On certain algebraic curves related to polynomial maps , 1996 .
[12] R. Walde,et al. Rational Periodic Points of the Quadratic Function Qc(x) = x2 + c , 1994 .
[13] Loïc Merel,et al. Bornes pour la torsion des courbes elliptiques sur les corps de nombres , 1996 .
[14] Barry Mazur,et al. Modular curves and the eisenstein ideal , 1977 .
[15] Patrick Morton,et al. Arithmetic properties of periodic points of quadratic maps, II , 1992 .
[16] J. Cremona. Algorithms for Modular Elliptic Curves , 1992 .
[17] Gregory S. Call,et al. Canonical Heights on Projective Space , 1997 .