Fatty acid metabolism in the Plasmodium apicoplast: Drugs, doubts and knockouts.

The malaria parasite Plasmodium possesses a relict, non-photosynthetic plastid known as the apicoplast. The apicoplast is essential for parasite survival, and harbors several plant-like metabolic pathways including a type II fatty acid synthesis (FASII) pathway. The FASII pathway was discovered in 1998, and much of the early research in the field pursued it as a therapeutic drug target. These studies identified a range of compounds with activity against bloodstage parasites and led to the localization and characterization of most enzymes in the pathway. However, when genetic studies revealed FASII was dispensable in bloodstage parasites, it effectively discounted the pathway as a therapeutic drug target, and suggested these compounds instead interfered with other processes. Interest in FASII then shifted toward its disruption for malaria prophylaxis and vaccine development, with experiments in rodent malaria models identifying a crucial role for the pathway in the parasite's transition from the liver to the blood. Unexpectedly however, the human malaria parasite P. falciparum was recently found to differ from rodent models and require FASII for mosquito stage development. This requirement blocked the production of the FASII-deficient forms that might be used as a genetically attenuated parasite vaccine, suggesting the pathway was also unsuitable as a vaccine target. This review discusses how perception of FASII has changed over time, and presents key findings about each enzyme in the pathway to identify remaining questions and opportunities for malaria control.

[1]  S. Kappe,et al.  2-Hexadecynoic acid inhibits plasmodial FAS-II enzymes and arrests erythrocytic and liver stage Plasmodium infections. , 2010, Bioorganic & medicinal chemistry.

[2]  C. Janse,et al.  Stable transfection of malaria parasite blood stages. , 1995, Science.

[3]  G. Folkers,et al.  Recombinant Expression and Biochemical Characterization of the Unique Elongating β-Ketoacyl-Acyl Carrier Protein Synthase Involved in Fatty Acid Biosynthesis of Plasmodium falciparum Using Natural and Artificial Substrates* , 2006, Journal of Biological Chemistry.

[4]  K. Athenstaedt,et al.  Phosphatidic acid, a key intermediate in lipid metabolism. , 1999, European journal of biochemistry.

[5]  A. Kuehn,et al.  The Coming-Out of Malaria Gametocytes , 2010, Journal of biomedicine & biotechnology.

[6]  S. Hoffman,et al.  Type II Fatty Acid Biosynthesis Is Essential for Plasmodium falciparum Sporozoite Development in the Midgut of Anopheles Mosquitoes , 2013, Eukaryotic Cell.

[7]  R. Lyons,et al.  Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii by inhibition of apicomplexan Fab I. , 2001, International journal for parasitology.

[8]  J. Schachtner,et al.  Apicomplexan parasites contain a single lipoic acid synthase located in the plastid , 2003, FEBS letters.

[9]  H. Asahi,et al.  Investigating serum factors promoting erythrocytic growth of Plasmodium falciparum. , 2005, Experimental parasitology.

[10]  C. Biot,et al.  The apicoplast: a key target to cure malaria. , 2012, Current pharmaceutical design.

[11]  Rahul Modak,et al.  Isothermal unfolding studies on the apo and holo forms of Plasmodium falciparum acyl carrier protein , 2007, The FEBS journal.

[12]  V. Heussler,et al.  Mitochondrial lipoic acid scavenging is essential for Plasmodium berghei liver stage development , 2012, Cellular microbiology.

[13]  N. Waters,et al.  Synthesis and biological evaluation of novel sulfonyl-naphthalene-1,4-diols as FabH inhibitors. , 2008, Bioorganic & medicinal chemistry letters.

[14]  I. Sherman,et al.  Phospholipid composition, cholesterol content and cholesterol exchange in Plasmodium falciparum-infected red cells. , 1990, Molecular and biochemical parasitology.

[15]  Terry K. Smith,et al.  Apicoplast Lipoic Acid Protein Ligase B Is Not Essential for Plasmodium falciparum , 2007, PLoS pathogens.

[16]  C. Benning Mechanisms of lipid transport involved in organelle biogenesis in plant cells. , 2009, Annual review of cell and developmental biology.

[17]  H. Asahi Plasmodium falciparum: Chemically defined medium for continuous intraerythrocytic growth using lipids and recombinant albumin. , 2009, Experimental parasitology.

[18]  M. Mather,et al.  Mitochondrial drug targets in apicomplexan parasites. , 2007, Current drug targets.

[19]  Manuel Llinás,et al.  Kinetic Flux Profiling Elucidates Two Independent Acetyl-CoA Biosynthetic Pathways in Plasmodium falciparum* , 2013, The Journal of Biological Chemistry.

[20]  Joel S. Freundlich,et al.  The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites. , 2008, Cell host & microbe.

[21]  S. Sharma,et al.  Solution structures of conformationally equilibrium forms of holo-acyl carrier protein (PfACP) from Plasmodium falciparum provides insight into the mechanism of activation of ACPs. , 2006, Biochemistry.

[22]  Takuya Maeda,et al.  Pyruvate kinase type-II isozyme in Plasmodium falciparum localizes to the apicoplast. , 2009, Parasitology international.

[23]  G. McFadden,et al.  Fatty acid biosynthesis as a drug target in apicomplexan parasites. , 2007, Current drug targets.

[24]  Rahul Modak,et al.  Mass Spectrometry-Based Systems Approach for Identification of Inhibitors of Plasmodium falciparum Fatty Acid Synthase , 2007, Antimicrobial Agents and Chemotherapy.

[25]  D. Rice,et al.  Modification of Triclosan Scaffold in Search of Improved Inhibitors for Enoyl‐Acyl Carrier Protein (ACP) Reductase in Toxoplasma gondii , 2013, ChemMedChem.

[26]  Deniz Tasdemir,et al.  Inhibition of Plasmodium falciparum fatty acid biosynthesis: evaluation of FabG, FabZ, and FabI as drug targets for flavonoids. , 2006, Journal of medicinal chemistry.

[27]  Karsten Fischer,et al.  The toxoplasma apicoplast phosphate translocator links cytosolic and apicoplast metabolism and is essential for parasite survival. , 2010, Cell host & microbe.

[28]  T. Sim,et al.  Plasmodium falciparum pyruvate kinase as a novel target for antimalarial drug-screening. , 2007, Travel medicine and infectious disease.

[29]  C. Janse,et al.  High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei , 2006, Nature Protocols.

[30]  G. McFadden,et al.  Targeting apicoplasts in malaria parasites , 2013, Expert opinion on therapeutic targets.

[31]  Aditi Gupta,et al.  Functional characterization of beta-ketoacyl-ACP reductase (FabG) from Plasmodium falciparum. , 2003, Biochemical and biophysical research communications.

[32]  P. T. Englund,et al.  A fatty-acid synthesis mechanism specialized for parasitism , 2007, Nature Reviews Microbiology.

[33]  Eileen Kraemer,et al.  PlasmoDB: a functional genomic database for malaria parasites , 2008, Nucleic Acids Res..

[34]  C. Spry,et al.  A Class of Pantothenic Acid Analogs Inhibits Plasmodium falciparum Pantothenate Kinase and Represses the Proliferation of Malaria Parasites , 2005, Antimicrobial Agents and Chemotherapy.

[35]  B. Striepen,et al.  Make It or Take It: Fatty Acid Metabolism of Apicomplexan Parasites , 2007, Eukaryotic Cell.

[36]  Christopher J. Tonkin,et al.  Tropical infectious diseases: Metabolic maps and functions of the Plasmodium falciparum apicoplast , 2004, Nature Reviews Microbiology.

[37]  N. Surolia,et al.  Analyses of co‐operative transitions in Plasmodium falciparumβ‐ketoacyl acyl carrier protein reductase upon co‐factor and acyl carrier protein binding , 2006, The FEBS journal.

[38]  Avadhesha Surolia,et al.  β‐Ketoacyl‐ACP synthase I/II from Plasmodium falciparum (PfFabB/F)—Is it B or F? , 2009, IUBMB life.

[39]  D. Fidock,et al.  Structural Elucidation of the Specificity of the Antibacterial Agent Triclosan for Malarial Enoyl Acyl Carrier Protein Reductase* , 2002, The Journal of Biological Chemistry.

[40]  G. Klebe,et al.  Novel Type II Fatty Acid Biosynthesis (FAS II) Inhibitors as Multistage Antimalarial Agents , 2013, ChemMedChem.

[41]  S. Prigge,et al.  Targeting the fatty acid biosynthesis enzyme, beta-ketoacyl-acyl carrier protein synthase III (PfKASIII), in the identification of novel antimalarial agents. , 2009, Journal of medicinal chemistry.

[42]  D. Roos,et al.  Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[43]  A. Cowman,et al.  Characterization of promoters and stable transfection by homologous and nonhomologous recombination in Plasmodium falciparum. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. Parsons,et al.  Apicoplast Targeting of a Toxoplasma gondii Transmembrane Protein Requires a Cytosolic Tyrosine‐Based Motif , 2012, Traffic.

[45]  Colin Berry,et al.  Analogues of thiolactomycin as potential anti-malarial and anti-trypanosomal agents. , 2004, Bioorganic & medicinal chemistry.

[46]  Joel S. Freundlich,et al.  Discrimination of potent inhibitors of Toxoplasma gondii enoyl-acyl carrier protein reductase by a thermal shift assay. , 2013, Biochemistry.

[47]  N. Surolia,et al.  Catalysis and mechanism of malonyl transferase activity in type II fatty acid biosynthesis acyl carrier proteins. , 2009, Molecular bioSystems.

[48]  Kami Kim,et al.  Toxoplasma gondii: the model apicomplexan. , 2004, International journal for parasitology.

[49]  P. Gornicki Apicoplast fatty acid biosynthesis as a target for medical intervention in apicomplexan parasites. , 2003, International journal for parasitology.

[50]  D. Rice,et al.  Identification and development of novel inhibitors of Toxoplasma gondii enoyl reductase. , 2010, Journal of medicinal chemistry.

[51]  G. McFadden,et al.  The evolution, metabolism and functions of the apicoplast , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[52]  Nicholas Fisher,et al.  Glycerol: An unexpected major metabolite of energy metabolism by the human malaria parasite , 2009, Malaria Journal.

[53]  R. Datla,et al.  Molecular and biochemical characterizations of a plastidic glycerol-3-phosphate dehydrogenase from Arabidopsis , 2001 .

[54]  M. Gardner,et al.  Functional characterization of the acyl carrier protein (PfACP) and beta-ketoacyl ACP synthase III (PfKASIII) from Plasmodium falciparum. , 2002, Molecular and biochemical parasitology.

[55]  P. Tonge,et al.  Inhibiting enoyl-ACP reductase (FabI) across pathogenic microorganisms by linear sesquiterpene lactones from Anthemis auriculata. , 2008, Phytomedicine : international journal of phytotherapy and phytopharmacology.

[56]  Y. Wu Transfection of Plasmodiium falciparum within human red biood cells , 1995 .

[57]  I. Coppens,et al.  Cell cycle‐regulated vesicular trafficking of Toxoplasma APT1, a protein localized to multiple apicoplast membranes , 2007, Molecular microbiology.

[58]  Joseph L. DeRisi,et al.  Chemical Rescue of Malaria Parasites Lacking an Apicoplast Defines Organelle Function in Blood-Stage Plasmodium falciparum , 2011, PLoS biology.

[59]  B. Striepen,et al.  Apicoplast fatty acid synthesis is essential for organelle biogenesis and parasite survival in Toxoplasma gondii , 2006, Proceedings of the National Academy of Sciences.

[60]  R. Moritz,et al.  Enzymes involved in plastid‐targeted phosphatidic acid synthesis are essential for Plasmodium yoelii liver‐stage development , 2014, Molecular microbiology.

[61]  C. Spry,et al.  Coenzyme A biosynthesis: an antimicrobial drug target. , 2008, FEMS microbiology reviews.

[62]  S. Müller,et al.  Lipoic Acid Metabolism of Plasmodium - A Suitable Drug Target , 2012, Current pharmaceutical design.

[63]  N. Surolia,et al.  Production and purification of refolded recombinant Plasmodium falciparum beta-ketoacyl-ACP reductase from inclusion bodies. , 2005, Protein expression and purification.

[64]  A. Kastaniotis,et al.  Apicoplast and Endoplasmic Reticulum Cooperate in Fatty Acid Biosynthesis in Apicomplexan Parasite Toxoplasma gondii* , 2011, The Journal of Biological Chemistry.

[65]  S. Müller,et al.  Plasmodium falciparum: organelle-specific acquisition of lipoic acid. , 2009, The international journal of biochemistry & cell biology.

[66]  A. Vaughan,et al.  Plasmodium pyruvate dehydrogenase activity is only essential for the parasite's progression from liver infection to blood infection , 2010, Molecular microbiology.

[67]  R. Ménard,et al.  Recent insights into fatty acid acquisition and metabolism in malarial parasites , 2010, F1000 biology reports.

[68]  Christopher J. Tonkin,et al.  Evidence for Golgi‐independent transport from the early secretory pathway to the plastid in malaria parasites , 2006, Molecular microbiology.

[69]  R. Cibulskis,et al.  World Malaria Report 2013 , 2014 .

[70]  D. Soldati-Favre,et al.  Functional genetics in Apicomplexa: Potentials and limits , 2011, FEBS letters.

[71]  S. Levy,et al.  Triclosan targets lipid synthesis , 1998, Nature.

[72]  S. Prigge,et al.  Lipoic Acid Metabolism in Microbial Pathogens , 2010, Microbiology and Molecular Biology Reviews.

[73]  D. Rice,et al.  Design, synthesis, and biological activity of diaryl ether inhibitors of Toxoplasma gondii enoyl reductase. , 2013, Bioorganic & medicinal chemistry letters.

[74]  A. Fairlamb,et al.  Triclosan is minimally effective in rodent malaria models , 2011, Nature Medicine.

[75]  T. Ramya,et al.  Inhibitors of Nonhousekeeping Functions of the Apicoplast Defy Delayed Death in Plasmodium falciparum , 2006, Antimicrobial Agents and Chemotherapy.

[76]  S. Prigge,et al.  Plasmodium falciparum acyl carrier protein crystal structures in disulfide‐linked and reduced states and their prevalence during blood stage growth , 2010, Proteins.

[77]  S. Prigge,et al.  Scavenging of the cofactor lipoate is essential for the survival of the malaria parasite Plasmodium falciparum , 2007, Molecular microbiology.

[78]  A. Vaughan,et al.  Type II fatty acid synthesis is essential only for malaria parasite late liver stage development , 2008, Cellular microbiology.

[79]  I. Gilbert,et al.  Thiolactomycin analogues as potential anti-Toxoplasma gondii agents. , 2009, Parasitology international.

[80]  A. Cavalli,et al.  Design, synthesis, and biological and crystallographic evaluation of novel inhibitors of Plasmodium falciparum enoyl-ACP-reductase (PfFabI). , 2013, Journal of medicinal chemistry.

[81]  X. Su,et al.  Transfection of Plasmodium falciparum within human red blood cells. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[82]  T. Mitamura,et al.  Intraerythrocytic Plasmodium falciparum utilize a broad range of serum-derived fatty acids with limited modification for their growth , 2006, Parasitology.

[83]  M. Gatton,et al.  Fatty Acid Synthesis and Pyruvate Metabolism Pathways Remain Active in Dihydroartemisinin-Induced Dormant Ring Stages of Plasmodium falciparum , 2014, Antimicrobial Agents and Chemotherapy.

[84]  Uwe Gross,et al.  Carbohydrate Metabolism in the Toxoplasma gondii Apicoplast: Localization of Three Glycolytic Isoenzymes, the Single Pyruvate Dehydrogenase Complex, and a Plastid Phosphate Translocator , 2007, Eukaryotic Cell.

[85]  J. Meuwissen,et al.  Infectivity of cultured Plasmodium falciparum gametocytes to mosquitoes , 1989, Parasitology.

[86]  G. McFadden,et al.  Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway , 2000, The EMBO journal.

[87]  R. Ménard,et al.  Looking under the skin: the first steps in malarial infection and immunity , 2013, Nature Reviews Microbiology.

[88]  P. Frey,et al.  S-adenosylmethionine as an oxidant: the radical SAM superfamily. , 2007, Trends in biochemical sciences.

[89]  H. Vial,et al.  Oleic Acid Biosynthesis in Plasmodium falciparum: Characterization of the Stearoyl-CoA Desaturase and Investigation as a Potential Therapeutic Target , 2009, PloS one.

[90]  L. Sibley,et al.  Host cells: mobilizable lipid resources for the intracellular parasite Toxoplasma gondii. , 2002, Journal of cell science.

[91]  H. Majumder,et al.  Luteolin, an Abundant Dietary Component is a Potent Anti-leishmanial Agent that Acts by Inducing Topoisomerase II-mediated Kinetoplast DNA Cleavage Leading to Apoptosis , 2000, Molecular medicine.

[92]  R. Perozzo,et al.  Anthecularin: a novel sesquiterpene lactone from Anthemis auriculata with antiprotozoal activity. , 2007, Journal of Organic Chemistry.

[93]  N. Surolia,et al.  Structural basis for the functional and inhibitory mechanisms of β-hydroxyacyl-acyl carrier protein dehydratase (FabZ) of Plasmodium falciparum. , 2011, Journal of structural biology.

[94]  R. Sinden,et al.  Laboratory models for research in vivo and in vitro on malaria parasites of mammals: Current status. , 1990, Parasitology today.

[95]  F. Winkler,et al.  The crystal structure of PfFabZ, the unique β‐hydroxyacyl‐ACP dehydratase involved in fatty acid biosynthesis of Plasmodium falciparum , 2005, Protein science : a publication of the Protein Society.

[96]  G. Zhu,et al.  Functional Characterization of an Evolutionarily Distinct Phosphopantetheinyl Transferase in the Apicomplexan Cryptosporidium parvum , 2005, Eukaryotic Cell.

[97]  R. Haselkorn,et al.  Subcellular localization of acetyl-CoA carboxylase in the apicomplexan parasite Toxoplasma gondii , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[98]  Choukri Ben Mamoun,et al.  Targeting the lipid metabolic pathways for the treatment of malaria , 2009, Drug development research.

[99]  S. Prigge,et al.  Redox‐dependent lipoylation of mitochondrial proteins in Plasmodium falciparum , 2014, Molecular microbiology.

[100]  B. Humbel,et al.  Membrane Contact Sites between Apicoplast and ER in Toxoplasma gondii Revealed by Electron Tomography , 2009, Traffic.

[101]  D. Rice,et al.  Studies of Toxoplasma gondii and Plasmodium falciparum enoyl acyl carrier protein reductase and implications for the development of antiparasitic agents , 2007, Acta crystallographica. Section D, Biological crystallography.

[102]  S. Kappe,et al.  Malaria: progress, perils, and prospects for eradication. , 2008, The Journal of clinical investigation.

[103]  Pamela G. Guren,et al.  Candidates , 1982, Otolaryngology–Head and Neck Surgery.

[104]  D. Mazier,et al.  Complete development of hepatic stages of Plasmodium falciparum in vitro. , 1985, Science.

[105]  S. Makino,et al.  Molecular and biochemical characterization of Toxoplasma gondii β-hydroxyacyl-acyl carrier protein dehydratase (FABZ) , 2008, Parasitology Research.

[106]  Joel S. Freundlich,et al.  X-ray Structural Analysis of Plasmodium falciparum Enoyl Acyl Carrier Protein Reductase as a Pathway toward the Optimization of Triclosan Antimalarial Efficacy* , 2007, Journal of Biological Chemistry.

[107]  D. Soldati-Favre,et al.  Apicomplexan mitochondrial metabolism: a story of gains, losses and retentions. , 2008, Trends in parasitology.

[108]  R. Haselkorn,et al.  The Carboxyltransferase Activity of the Apicoplast Acetyl-CoA Carboxylase of Toxoplasma gondii Is the Target of Aryloxyphenoxypropionate Inhibitors* , 2002, The Journal of Biological Chemistry.

[109]  Jérôme Garin,et al.  Chloroplast proteomics highlights the subcellular compartmentation of lipid metabolism. , 2010, Progress in lipid research.

[110]  G. McFadden,et al.  Plasmodium falciparum apicoplast drugs: targets or off-targets? , 2012, Chemical reviews.

[111]  N. Surolia,et al.  Triclosan inhibit the growth of the late liver‐stage of Plasmodium , 2009, IUBMB life.

[112]  S. Ralph,et al.  A Type II Pathway for Fatty Acid Biosynthesis Presents Drug Targets in Plasmodium falciparum , 2003, Antimicrobial Agents and Chemotherapy.

[113]  S. Sharma,et al.  Crystal structure of dimeric FabZ of Plasmodium falciparum reveals conformational switching to active hexamers by peptide flips , 2006, FEBS letters.

[114]  V. Nussenzweig,et al.  Gene targeting in the rodent malaria parasite Plasmodium yoelii. , 2001, Molecular and biochemical parasitology.

[115]  E. Winzeler,et al.  A key role for lipoic acid synthesis during Plasmodium liver stage development , 2013, Cellular microbiology.

[116]  G. McFadden,et al.  Dimeric cyclohexane-1,3-dione oximes inhibit wheat acetyl-CoA carboxylase and show anti-malarial activity. , 2010, Bioorganic & medicinal chemistry letters.

[117]  A. Alcina,et al.  The cloning and expression of Pfacs1, a Plasmodium falciparum fatty acyl coenzyme A synthetase-1 targeted to the host erythrocyte cytoplasm. , 1999, Journal of molecular biology.

[118]  N. Surolia,et al.  X‐ray crystallographic analysis of the complexes of enoyl acyl carrier protein reductase of Plasmodium falciparum with triclosan variants to elucidate the importance of different functional groups in enzyme inhibition , 2010, IUBMB life.

[119]  J. Keithly,et al.  Expression and functional characterization of a giant Type I fatty acid synthase (CpFAS1) gene from Cryptosporidium parvum. , 2004, Molecular and biochemical parasitology.

[120]  S. Müller,et al.  Vitamin and cofactor biosynthesis pathways in Plasmodium and other apicomplexan parasites. , 2007, Trends in parasitology.

[121]  Xinxia Peng,et al.  A combined transcriptome and proteome survey of malaria parasite liver stages , 2008, Proceedings of the National Academy of Sciences.

[122]  G. McFadden,et al.  The malaria parasite Plasmodium falciparum has only one pyruvate dehydrogenase complex, which is located in the apicoplast , 2004, Molecular microbiology.

[123]  Joel S. Freundlich,et al.  Synthesis and biological activity of diaryl ether inhibitors of malarial enoyl acyl carrier protein reductase. Part 2: 2'-substituted triclosan derivatives. , 2006, Bioorganic & medicinal chemistry letters.

[124]  T. Ramya,et al.  Novel diphenyl ethers: design, docking studies, synthesis and inhibition of enoyl ACP reductase of Plasmodium falciparum and Escherichia coli. , 2006, Bioorganic & medicinal chemistry.

[125]  E. Maréchal,et al.  Toxoplasma gondii acyl-lipid metabolism: de novo synthesis from apicoplast-generated fatty acids versus scavenging of host cell precursors. , 2006, The Biochemical journal.

[126]  Rahul Modak,et al.  Deciphering the key residues in Plasmodium falciparumβ‐ketoacyl acyl carrier protein reductase responsible for interactions with Plasmodium falciparum acyl carrier protein , 2008, The FEBS journal.

[127]  A. Aly,et al.  Plasmodium yoelii Vitamin B5 Pantothenate Transporter Candidate is Essential for Parasite Transmission to the Mosquito , 2014, Scientific Reports.

[128]  J. Vanderberg,et al.  Complete in vitro maturation of Plasmodium falciparum gametocytes , 1981, Nature.

[129]  S. Sharma,et al.  Identification, Characterization, and Inhibition of Plasmodium falciparum β-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ)* , 2003, Journal of Biological Chemistry.

[130]  Choukri Ben Mamoun,et al.  Identification and Functional Analysis of the Primary Pantothenate Transporter, PfPAT, of the Human Malaria Parasite Plasmodium falciparum* , 2013, The Journal of Biological Chemistry.

[131]  S. Hoffman,et al.  Assessing the adequacy of attenuation of genetically modified malaria parasite vaccine candidates. , 2012, Vaccine.

[132]  C. Rock,et al.  Forty years of bacterial fatty acid synthesis. , 2002, Biochemical and biophysical research communications.

[133]  A. Alcina,et al.  The Plasmodium falciparum fatty acyl-CoA synthetase family (PfACS) and differential stage-specific expression in infected erythrocytes. , 2003, Molecular and biochemical parasitology.

[134]  T. Mitamura,et al.  Serum factors governing intraerythrocytic development and cell cycle progression of Plasmodium falciparum. , 2000, Parasitology international.

[135]  K. Saliba,et al.  Common dietary flavonoids inhibit the growth of the intraerythrocytic malaria parasite , 2008, BMC Research Notes.

[136]  S. Prigge,et al.  Lactococcus lactis fabH, Encoding β-Ketoacyl-Acyl Carrier Protein Synthase, Can Be Functionally Replaced by the Plasmodium falciparum Congener , 2010, Applied and Environmental Microbiology.

[137]  G. McFadden,et al.  The apicoplast: a plastid in Plasmodium falciparum and other Apicomplexan parasites. , 2003, International review of cytology.

[138]  D. Rice,et al.  Delivery of antimicrobials into parasites , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[139]  G. V. van Dooren,et al.  The algal past and parasite present of the apicoplast. , 2013, Annual review of microbiology.

[140]  A. Vaughan,et al.  Malaria parasite development in the mosquito and infection of the mammalian host. , 2009, Annual review of microbiology.

[141]  S. Ralph,et al.  Membrane transporters in the relict plastid of malaria parasites. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[142]  J. Cronan,et al.  In Vivo Functional Analyses of the Type II Acyl Carrier Proteins of Fatty Acid Biosynthesis* , 2007, Journal of Biological Chemistry.

[143]  A. Fairlamb,et al.  Kinetic, inhibition and structural studies on 3-oxoacyl-ACP reductase from Plasmodium falciparum, a key enzyme in fatty acid biosynthesis. , 2006, The Biochemical journal.

[144]  G. McFadden,et al.  Apicoplast acetyl Co-A carboxylase of the human malaria parasite is not targeted by cyclohexanedione herbicides. , 2014, International journal for parasitology.

[145]  S. Prigge,et al.  Malaria pulls a FASt one. , 2008, Cell host & microbe.

[146]  S. Booker,et al.  Identification and function of auxiliary iron-sulfur clusters in radical SAM enzymes. , 2012, Biochimica et biophysica acta.

[147]  S. Sharma,et al.  Self-acylation properties of type II fatty acid biosynthesis acyl carrier protein. , 2007, Chemistry & biology.

[148]  S. Prigge,et al.  Fatty Acid synthesis as a target for antimalarial drug discovery. , 2005, Combinatorial chemistry & high throughput screening.

[149]  C. Spry,et al.  The Human Malaria Parasite Plasmodium falciparum Is Not Dependent on Host Coenzyme A Biosynthesis* , 2009, The Journal of Biological Chemistry.

[150]  Joachim Schachtner,et al.  Toxoplasma gondii scavenges host‐derived lipoic acid despite its de novo synthesis in the apicoplast , 2006, The EMBO journal.

[151]  D. Fidock,et al.  In Vitro Efficacy, Resistance Selection, and Structural Modeling Studies Implicate the Malarial Parasite Apicoplast as the Target of Azithromycin* , 2007, Journal of Biological Chemistry.

[152]  C. Rock,et al.  Acetoacetyl-acyl carrier protein synthase. A target for the antibiotic thiolactomycin. , 1989, The Journal of biological chemistry.

[153]  G. McFadden,et al.  The carbon and energy sources of the non‐photosynthetic plastid in the malaria parasite , 2010, FEBS letters.

[154]  C. C. Maquiaveli,et al.  The leishmanicidal flavonols quercetin and quercitrin target Leishmania (Leishmania) amazonensis arginase. , 2012, Experimental parasitology.

[155]  I. Gilbert,et al.  Analogues of thiolactomycin as potential antimalarial agents. , 2005, Journal of medicinal chemistry.

[156]  M. Kapoor,et al.  Slow-tight-binding inhibition of enoyl-acyl carrier protein reductase from Plasmodium falciparum by triclosan. , 2004, The Biochemical journal.

[157]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[158]  D. Roos,et al.  A plastid segregation defect in the protozoan parasite Toxoplasma gondii , 2001, The EMBO journal.

[159]  A. Rendina,et al.  Inhibition of acetyl-coenzyme A carboxylase by two classes of grass-selective herbicides , 1990 .

[160]  A. Vaughan,et al.  Superior antimalarial immunity after vaccination with late liver stage-arresting genetically attenuated parasites. , 2011, Cell host & microbe.

[161]  D. Soldati-Favre,et al.  Apicoplast: keep it or leave it. , 2010, Microbes and infection.

[162]  G. Kumar,et al.  SAR and pharmacophore models for the rhodanine inhibitors of Plasmodium falciparum enoyl‐acyl carrier protein reductase , 2010, IUBMB life.

[163]  M. Strath,et al.  Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. , 1996, Journal of molecular biology.

[164]  C. Rock,et al.  Phosphatidic acid synthesis in bacteria. , 2013, Biochimica et biophysica acta.

[165]  N. Surolia,et al.  Apicoplast triose phosphate transporter (TPT) gene knockout is lethal for Plasmodium. , 2012, Molecular and biochemical parasitology.

[166]  S. Prigge,et al.  The initiating steps of a type II fatty acid synthase in Plasmodium falciparum are catalyzed by pfACP, pfMCAT, and pfKASIII. , 2003, Biochemistry.

[167]  A. Vaughan,et al.  Redefining the role of de novo fatty acid synthesis in Plasmodium parasites. , 2009, Trends in parasitology.

[168]  G. McFadden,et al.  The human malaria parasite Plasmodium falciparum possesses two distinct dihydrolipoamide dehydrogenases , 2004, Molecular microbiology.

[169]  W. Trager,et al.  Human malaria parasites in continuous culture. , 1976, Science.

[170]  H. Vial,et al.  Glycerophospholipid acquisition in Plasmodium - a puzzling assembly of biosynthetic pathways. , 2010, International journal for parasitology.

[171]  K. Fritz-Wolf,et al.  Biochemical and structural characterization of Plasmodium falciparum glutamate dehydrogenase 2. , 2012, Molecular and biochemical parasitology.

[172]  M. Kapoor,et al.  Kinetic determinants of the interaction of enoyl-ACP reductase from Plasmodium falciparum with its substrates and inhibitors. , 2001, Biochemical and biophysical research communications.

[173]  S. Sharma,et al.  Discovery of a rhodanine class of compounds as inhibitors of Plasmodium falciparum enoyl-acyl carrier protein reductase. , 2007, Journal of medicinal chemistry.

[174]  D. Gowda,et al.  Intraerythrocytic Plasmodium falciparum incorporates extraneous fatty acids to its lipids without any structural modification. , 2003, Molecular and biochemical parasitology.

[175]  U. Murty,et al.  Deorphanization of Malonyl CoA:ACP Transacylase Drug Target in Plasmodium falciparum (PfFabD) Using Bacterial Antagonists: A ‘Piggyback’ Approach for Antimalarial Drug Discovery , 2012, Molecular informatics.

[176]  S. Müller,et al.  Knockout Studies Reveal an Important Role of Plasmodium Lipoic Acid Protein Ligase A1 for Asexual Blood Stage Parasite Survival , 2009, PloS one.

[177]  Elena R. Lozovsky,et al.  Duplication, gene conversion, and genetic diversity in the species-specific acyl-CoA synthetase gene family of Plasmodium falciparum. , 2006, Molecular and biochemical parasitology.

[178]  David S. Roos,et al.  A plastid organelle as a drug target in apicomplexan parasites , 1997, Nature.

[179]  S. Müller,et al.  The human malaria parasite Plasmodium falciparum has distinct organelle‐specific lipoylation pathways , 2004, Molecular microbiology.

[180]  R. Compans,et al.  Immunization with a Mixture of HIV Env DNA and VLP Vaccines Augments Induction of CD8 T Cell Responses , 2010, Journal of biomedicine & biotechnology.

[181]  R. Coleman,et al.  The Plasmodium falciparum PfGatp is an Endoplasmic Reticulum Membrane Protein Important for the Initial Step of Malarial Glycerolipid Synthesis* , 2004, Journal of Biological Chemistry.

[182]  S. Booker Unraveling the pathway of lipoic acid biosynthesis. , 2004, Chemistry & biology.

[183]  R. Haselkorn,et al.  Growth of Toxoplasma gondii is inhibited by aryloxyphenoxypropionate herbicides targeting acetyl-CoA carboxylase. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[184]  Dominique Soldati-Favre,et al.  Dual Targeting of Antioxidant and Metabolic Enzymes to the Mitochondrion and the Apicoplast of Toxoplasma gondii , 2007, PLoS pathogens.

[185]  Malcolm J. McConville,et al.  BCKDH: The Missing Link in Apicomplexan Mitochondrial Metabolism Is Required for Full Virulence of Toxoplasma gondii and Plasmodium berghei , 2014, PLoS pathogens.

[186]  S. Krungkrai,et al.  Malaria parasite carbonic anhydrase: inhibition of aromatic/heterocyclic sulfonamides and its therapeutic potential. , 2011, Asian Pacific journal of tropical biomedicine.

[187]  V. Heussler,et al.  A new approach to generate a safe double-attenuated Plasmodium liver stage vaccine. , 2013, International journal for parasitology.

[188]  A. Regev,et al.  Distinct physiological states of Plasmodium falciparum in malaria-infected patients , 2007, Nature.

[189]  J. E. Hyde,et al.  Vitamin B metabolism in Plasmodium falciparum as a source of drug targets. , 2010, Trends in parasitology.

[190]  R. U. Byerrum,et al.  Plant dihydroxyacetone phosphate reductases : purification, characterization, and localization. , 1992, Plant physiology.

[191]  N. Surolia,et al.  Structural Insights into the Acyl Intermediates of the Plasmodium falciparum Fatty Acid Synthesis Pathway , 2009, The Journal of Biological Chemistry.

[192]  R. Haselkorn,et al.  An isoleucine/leucine residue in the carboxyltransferase domain of acetyl-CoA carboxylase is critical for interaction with aryloxyphenoxypropionate and cyclohexanedione inhibitors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[193]  K. Christensen,et al.  Quercetin, a fluorescent bioflavanoid, inhibits Trypanosoma brucei hexokinase 1. , 2011, Experimental parasitology.

[194]  G. Zhu,et al.  Functional characterizations of malonyl-CoA:acyl carrier protein transacylase (MCAT) in Eimeria tenella. , 2012, Molecular and biochemical parasitology.

[195]  G. McFadden,et al.  Atypical lipid composition in the purified relict plastid (apicoplast) of malaria parasites , 2013, Proceedings of the National Academy of Sciences.

[196]  A. Verma,et al.  Comparative modeling of 3-oxoacyl-acyl-carrier protein synthase I/II in Plasmodium falciparum - A potent target of malaria , 2010 .

[197]  B. Striepen,et al.  Lipid synthesis in protozoan parasites: a comparison between kinetoplastids and apicomplexans. , 2013, Progress in lipid research.

[198]  G. McFadden The apicoplast , 2010, Protoplasma.