Statistical analysis of supersymmetric dark matter in the minimal supersymmetric standard model after WMAP

We study supersymmetric dark matter in the general flavor diagonal minimal supersymmetric standard model by means of an extensive random scan of its parameter space. We find that, in contrast with the standard minimal supergravity lore, the large majority of viable models features either a Higgsino or a winolike lightest neutralino, and yields a relic abundance well below the Wilkinson Microwave Anisotropy Probe (WMAP) bound. Among the models with neutralino relic density within the WMAP range, Higgsinolike neutralinos are still dominant, though a sizable fraction of binos is also present. In this latter case, coannihilations are shown to be essential in order to obtain the correct neutralino abundance. We then carry out a statistical analysis and a general discussion of neutralino dark matter direct detection and of indirect neutralino detection at neutrino telescopes and at antimatter search experiments. We point out that current data exclude only a marginal portion of the viable parameter space, and that models whose thermal relic abundance lies in the WMAP range will be significantly probed only at future direct detection experiments. Finally, we emphasize the importance of relic density enhancement mechanisms for indirect detection perspectives, in particular, at future antimatter search experiments.

[1]  Gaugino and higgsino coannihilations I: neutralino-neutralino interactions , 2002, hep-ph/0210041.

[2]  R. Arnowitt,et al.  Gauge hierarchy in supergravity GUTS , 1983 .

[3]  S. Ferrara,et al.  Gauge models with spontaneously broken local supersymmetry , 1982 .

[4]  Neutralino relic density in supersymmetric GUTs with no-scale boundary conditions above the unification scale , 2003, hep-ph/0306119.

[5]  R. Arnowitt,et al.  Locally Supersymmetric Grand Unification , 1982 .

[6]  Gluino annihilations and neutralino dark matter , 2004, hep-ph/0402208.

[7]  G. Girardi,et al.  Constraints on a system of two neutral fermions from cosmology , 1984 .

[8]  A. Semenov,et al.  micrOMEGAs: Version 1.3 , 2006, Comput. Phys. Commun..

[9]  W. Axford,et al.  Cosmic rays in the interplanetary medium. , 1967 .

[10]  Stefano Profumo,et al.  SUSY dark matter and quintessence , 2003 .

[11]  Indirect detection of dark matter in km size neutrino telescopes , 1998, astro-ph/9906033.

[12]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[13]  T. Yanagida,et al.  Proton decay in a class of supersymmetric grand unified models , 1982 .

[14]  John Ellis,et al.  The MSSM Parameter Space with Non-Universal Higgs Masses , 2002 .

[15]  Darksusy - a Numerical Package for Supersymmetric Dark Matter Calculations , 2002, astro-ph/0211238.

[16]  Focus points and naturalness in supersymmetry , 1999, hep-ph/9909334.

[17]  Naturalness, weak scale supersymmetry, and the prospect for the observation of supersymmetry at the Fermilab Tevatron and at the CERN LHC , 1997, hep-ph/9710473.

[18]  Squark-, slepton-, and neutralino-chargino coannihilation effects in the low-energy effective minimal supersymmetric standard model , 2002, hep-ph/0208178.

[19]  R. Brandenberger,et al.  Nonthermal production of weakly interacting massive particles and the subgalactic structure of the universe. , 2001, Physical review letters.

[20]  Sadoulet,et al.  Model-independent comparison of direct versus indirect detection of supersymmetric dark matter. , 1994, Physical review letters.

[21]  James Ze Wang,et al.  Measurements of cosmic-ray low-energy antiproton and proton spectra in a transient period of solar field reversal. , 2001, Physical review letters.

[22]  Calculations of neutralino-stau coannihilation channels and the cosmologically relevant region of MSSM parameter space , 1999, hep-ph/9905481.

[23]  A. Djouadi,et al.  Light scalar top quarks and supersymmetric dark matter , 1999, hep-ph/9911496.

[24]  SUSY normal scalar mass hierarchy reconciles (g-2)(mu), b ---> s gamma an , 2004, hep-ph/0403214.

[25]  K. A. Olive,et al.  Exploration of the MSSM with non-universal Higgs masses , 2002, hep-ph/0210205.

[26]  J. Ellis,et al.  Erratum to ``Calculations of neutralino-stau coannihilation channels and the cosmologically relevant region of MSSM parameter space'' [Astroparticle Physics 13 (2000) 181-213] , 2001 .

[27]  D. Seckel,et al.  Three exceptions in the calculation of relic abundances. , 1991, Physical review. D, Particles and fields.

[28]  Cosmic antiprotons as a probe for supersymmetric dark matter , 1999, astro-ph/9902012.

[29]  P. Fayet Spontaneously Broken Supersymmetric Theories of Weak, Electromagnetic and Strong Interactions , 1977 .

[30]  A. Curioni,et al.  XENON: a 1 tonne Liquid Xenon Experiment for a Sensitive Dark Matter Search , 2002, astro-ph/0207670.

[31]  Dark matter relic abundance and scalar-tensor dark energy , 2004, astro-ph/0403614.

[32]  Savas Dimopoulos,et al.  Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC , 2004, hep-th/0405159.

[33]  Accurate relic densities with neutralino, chargino and sfermion coannihilations in mSUGRA , 2003, hep-ph/0301106.

[34]  R. Brandenberger,et al.  Non-thermal production of neutralino cold dark matter from cosmic string decays , 1999, hep-ph/9901357.

[35]  H. Pilkuhn Relativistic Particle Physics , 1979 .

[36]  F. Boudjema,et al.  micrOMEGAs : A program for calculating the relic density in the MSSM , 2002 .

[37]  Mitchell,et al.  Precision measurement of cosmic-Ray antiproton spectrum , 1999, Physical review letters.

[38]  J. Lykken,et al.  Supergravity as the messenger of supersymmetry breaking , 1983 .

[39]  J. Lykken,et al.  The Soft supersymmetry breaking Lagrangian: Theory and applications , 2005 .

[40]  E. Baltz,et al.  Improved constraints on supersymmetric dark matter from muon g -2 , 2002, astro-ph/0207673.

[41]  G. Tarlé,et al.  Cosmic-Ray Electrons and Positrons from 1 to 100 GeV: Measurements with HEAT and Their Interpretation , 2001 .

[42]  S. Weinberg Supersymmetry at ordinary energies. Masses and conservation laws , 1982 .

[43]  Neutralino Relic Density Enhancement in Non-Standard Cosmologies , 2004, astro-ph/0404390.

[44]  P. Gondolo,et al.  Limits on direct detection of neutralino dark matter from b ---> s gamma decays , 1995, hep-ph/9510252.

[45]  M. Diaz,et al.  Impact of physical principles at very high energy scales on the superparticle mass spectrum , 2000, hep-ph/0002245.

[46]  Heavy sneutrinos as dark matter , 1994, hep-ph/9409270.

[47]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[48]  Sensitivity of supersymmetric dark matter to the b quark mass , 2004, hep-ph/0404025.

[49]  Positron propagation and fluxes from neutralino annihilation in the halo , 1998, astro-ph/9808243.

[50]  Pierre Salati Quintessence and the relic density of neutralinos , 2003 .

[51]  Probing neutralino resonance annihilation via the indirect detection of dark matter , 2003, hep-ph/0312350.

[52]  S. Profumo Extended coannihilations from non universal sfermion masses , 2003, hep-ph/0305040.

[53]  Turner,et al.  Thermal relics: Do we know their abundances? , 1990, Physical review. D, Particles and fields.

[54]  K. Hamaguchi,et al.  Nonthermal dark matter via Affleck-Dine baryogenesis and its detection possibility , 2002, hep-ph/0205044.

[55]  Supersymmetric dark matter in light of WMAP , 2003, hep-ph/0303043.

[56]  D. Thompson,et al.  High-energy gamma-ray emission from the Galactic Center , 1998 .

[57]  D. Maurin,et al.  Antiprotons in cosmic rays from neutralino annihilation , 2004 .

[58]  V. Bednyakov,et al.  Slepton and neutralino or chargino coannihilations in the minimal supersymmetric standard model , 2002 .

[59]  The role of antimatter searches in the hunt for supersymmetric dark matter , 2004, hep-ph/0406018.

[60]  Dark matter detection in the light of recent experimental results , 2003, hep-ph/0309346.

[61]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[62]  Csaba Balazs,et al.  Chi**2 analysis of the minimal supergravity model including WMAP, g(mu)-2 and b -> s gamma constraints , 2003 .

[63]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[64]  G. J. Alner,et al.  NaI dark matter limits and the NAIAD array – a detector with improved sensitivity to WIMPs using unencapsulated NaI , 2000 .

[65]  Haas,et al.  Search for low-Z nuclei containing massive stable particles. , 1990, Physical review. D, Particles and fields.

[66]  M. Spiro,et al.  Experimental particle physics without accelerators , 1987 .

[67]  Quintessential enhancement of dark matter abundance , 2003, hep-ph/0302159.

[68]  P. Gondolo,et al.  Neutralino relic density including coannihilations , 1997 .

[69]  Calculations of Neutralino-Stop Coannihilation in the CMSSM , 2001, hep-ph/0112113.

[70]  Neutralino dark matter in focus point supersymmetry , 2000, hep-ph/0004043.

[71]  S. Profumo Neutralino dark matter,b−τYukawa unification, and nonuniversal sfermion masses , 2003, hep-ph/0304071.

[72]  Lisa Randall,et al.  Wino cold dark matter from anomaly mediated SUSY breaking , 2000 .

[73]  Á. Morales Direct detection of WIMP dark matter , 1999, astro-ph/9912554.

[74]  Pran Nath,et al.  WMAP constraints, supersymmetric dark matter, and implications for the direct detection of supersymmetry , 2003 .

[75]  Masaki Sasagawa,et al.  Relic density and elastic scattering cross-sections of the neutralino in the MSSM with CP violating phases , 2004 .