Mejora de la seguridad y la vida útil de alimentos de origen vegetal mediante métodos biológicos

espanolLos alimentos de origen vegetal estan a menudo implicados en la aparicion de brotes de intoxicaciones alimentarias. El control biologico de los microorganismos patogenos o alterantes en alimentos vegetales no deja de ser una herramienta interesante, como lo demuestra la intensidad de los estudios realizados en este campo sobre los agentes antimicrobianos producidos por microorganismos, en especial los conocidos como bacteriocinas, asi como los antimicrobianos naturales presentes en las plantas y sus aceites esenciales. Los bacteriofagos son una herramienta muy interesante para la inactivacion de patogenos en alimentos, como lo demuestra el reciente desarrollo de preparados comerciales. Los antimicrobianos naturales funcionan mejor cuando se emplean como parte de la tecnologia de obstaculos o barreras, pudiendo establecerefectos sinergicos con otros agentes antimicrobianos o con tratamientos fisico quimicos. EnglishVegetable foods are often involved in outbreaks of foodborne illnesses. Biological control of human pathogenic and food spoiling bacteria in vegetable foods still remains a viable approach, as shown by the numerous studies published in recent years on antimicrobial substances from microorganismos, especially the so-called bacteriocins, as well as on plant-derived natural antimicrobial compounds and essential oils. Bacteriophages are also a relevant tool for inactivation of foodborne pathogens, as shown by recent development of commercial phage preparations. The efficacy of natural antimicrobials can be improved considerably if they are used as part of hurdle technology, since they can act synergistically with other antimicrobials or with physico-chemical treatments.

[1]  A. Gálvez,et al.  Application of bacteriophages in post-harvest control of human pathogenic and food spoiling bacteria , 2016, Critical reviews in biotechnology.

[2]  A. Gálvez,et al.  The Cyclic Antibacterial Peptide Enterocin AS-48: Isolation, Mode of Action, and Possible Food Applications , 2014, International journal of molecular sciences.

[3]  C. Braden,et al.  Emerging trends in foodborne diseases. , 2013, Infectious disease clinics of North America.

[4]  F. Diez-Gonzalez,et al.  Reduction of Escherichia coli O157:H7 viability on hard surfaces by treatment with a bacteriophage mixture. , 2011, International journal of food microbiology.

[5]  S. Abedon Lysis from without , 2011, Bacteriophage.

[6]  H. Abriouel,et al.  Bacteriocins for bioprotection of foods. , 2011 .

[7]  H. Abriouel,et al.  Diversity and applications of Bacillus bacteriocins. , 2011, FEMS microbiology reviews.

[8]  P. Hand,et al.  Fresh fruit and vegetables as vehicles for the transmission of human pathogens. , 2010, Environmental microbiology.

[9]  H. Abriouel,et al.  Potential Applications of the Cyclic Peptide Enterocin AS-48 in the Preservation of Vegetable Foods and Beverages , 2010, Probiotics and antimicrobial proteins.

[10]  N. Benomar,et al.  Microbial antagonists to food-borne pathogens and biocontrol. , 2010, Current opinion in biotechnology.

[11]  M. Martínez-Bueno,et al.  Combined effect of enterocin AS-48 and high hydrostatic pressure to control food-borne pathogens inoculated in low acid fermented sausages. , 2010, Meat science.

[12]  A. Rosenthal,et al.  Use of a logistic model to assess spoilage by Byssochlamys fulva in clarified apple juice. , 2010, International journal of food microbiology.

[13]  Li-Chun Lin,et al.  Cronobacter sakazakii in foods and factors affecting its survival, growth, and inactivation. , 2009, International journal of food microbiology.

[14]  A. A. Tribst,et al.  Review: Microbiological quality and safety of fruit juices—past, present and future perspectives , 2009, Critical reviews in microbiology.

[15]  K. Muthukumarappan,et al.  Application of natural antimicrobials for food preservation. , 2009, Journal of agricultural and food chemistry.

[16]  C W Hedberg,et al.  The growing burden of foodborne outbreaks due to contaminated fresh produce: risks and opportunities , 2009, Epidemiology and Infection.

[17]  T. Ross,et al.  Use of bacteriophages as biocontrol agents to control Salmonella associated with seed sprouts. , 2009, International journal of food microbiology.

[18]  C. Randazzo,et al.  Growth of acid-adapted Listeria monocytogenes in orange juice and in minimally processed orange slices. , 2009 .

[19]  H. Abriouel,et al.  Inactivation of Listeria monocytogenes in raw fruits by enterocin AS-48. , 2008, Journal of food protection.

[20]  M. Somolinos,et al.  Relationship between Sublethal Injury and Microbial Inactivation by the Combination of High Hydrostatic Pressure and Citral or tert-Butyl Hydroquinone , 2008, Applied and Environmental Microbiology.

[21]  H. Abriouel,et al.  Inhibition of food poisoning and pathogenic bacteria by Lactobacillus plantarum strain 2.9 isolated from ben saalga, both in a culture medium and in food , 2008 .

[22]  M. Menetrez,et al.  Bacteriophages Reduce Experimental Contamination of Hard Surfaces, Tomato, Spinach, Broccoli, and Ground Beef by Escherichia coli O157:H7 , 2008, Applied and Environmental Microbiology.

[23]  C. Uchima,et al.  Incidence and growth of Listeria monocytogenes in persimmon (Diospyros kaki) fruit. , 2008, International journal of food microbiology.

[24]  M. Valero,et al.  Effective chemical control of psychrotrophic Bacillus cereus EPSO-35AS and INRA TZ415 spore outgrowth in carrot broth. , 2008, Food microbiology.

[25]  F. O. Bobbio,et al.  Determination of anthocyanins from acerola (Malpighia emarginata DC.) and açai (Euterpe oleracea Mart.) by HPLC–PDA–MS/MS , 2008 .

[26]  H. Abriouel,et al.  Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. , 2008, Critical reviews in biotechnology.

[27]  H. Abriouel,et al.  Bacteriocin-based strategies for food biopreservation. , 2007, International journal of food microbiology.

[28]  P. Setlow,et al.  Response of Spores to High‐Pressure Processing , 2007 .

[29]  B. Siegmund,et al.  Growth behavior of off-flavor-forming microorganisms in apple juice. , 2007, Journal of agricultural and food chemistry.

[30]  J. Dijksterhuis Heat-resistant ascospores , 2007 .

[31]  C. Phillips,et al.  The growth of Propionibacterium cyclohexanicum in fruit juices and its survival following elevated temperature treatments. , 2007, Food microbiology.

[32]  M. Friedman,et al.  Carvacrol, cinnamaldehyde, oregano oil, and thymol inhibit Clostridium perfringens spore germination and outgrowth in ground turkey during chilling. , 2007, Journal of food protection.

[33]  C. Hill,et al.  Bacteriocins: Biological tools for bio-preservation and shelf-life extension , 2006 .

[34]  S. Rolph,et al.  Use of Bacteriophages to Control Salmonella in Experimentally Contaminated Sprout Seeds , 2006 .

[35]  A. Yousef,et al.  Use of phenolic compounds for sensitizing Listeria monocytogenes to high-pressure processing. , 2006, International journal of food microbiology.

[36]  G. Fitzgerald,et al.  The combined effect of high pressure and nisin on inactivation of microorganisms in milk. , 2005 .

[37]  J. Arqués,et al.  Effect of combinations of high-pressure treatment and bacteriocin-producing lactic acid bacteria on the survival of Listeria monocytogenes in raw milk cheese , 2005 .

[38]  Armando Albert,et al.  Peptide AS-48: prototype of a new class of cyclic bacteriocins. , 2004, Current protein & peptide science.

[39]  S. Burt,et al.  Essential oils: their antibacterial properties and potential applications in foods--a review. , 2004, International journal of food microbiology.

[40]  Britta Leverentz,et al.  Optimizing concentration and timing of a phage spray application to reduce Listeria monocytogenes on honeydew melon tissue. , 2004, Journal of food protection.

[41]  Ana L Penteado,et al.  Growth of Listeria monocytogenes in melon, watermelon and papaya pulps. , 2004, International journal of food microbiology.

[42]  R. Evans,et al.  Applications of the bacteriocin, nisin , 1996, Antonie van Leeuwenhoek.

[43]  B. Guamis,et al.  Inactivation of spores of Bacillus cereus in cheese by high hydrostatic pressure with the addition of nisin or lysozyme. , 2003, Journal of dairy science.

[44]  J. Monfort,et al.  New mild technologies in meat processing: high pressure as a model technology. , 2002, Meat science.

[45]  J. Monfort,et al.  Bactericidal synergism through bacteriocins and high pressure in a meat model system during storage , 2002 .

[46]  L. Beuchat Ecological factors influencing survival and growth of human pathogens on raw fruits and vegetables. , 2002, Microbes and infection.

[47]  J. Cleveland,et al.  Bacteriocins: safe, natural antimicrobials for food preservation. , 2001, International journal of food microbiology.

[48]  C. Morris,et al.  Identification of Bacteria in Pasteurized Zucchini Purées Stored at Different Temperatures and Comparison with Those Found in Other Pasteurized Vegetable Purées , 2001, Applied and Environmental Microbiology.

[49]  E. Smid,et al.  Influence of food matrix on inactivation of Bacillus cereus by combinations of nisin, pulsed electric field treatment, and carvacrol. , 2001, Journal of food protection.

[50]  B. Masschalck,et al.  High pressure increases bactericidal activity and spectrum of lactoferrin, lactoferricin and nisin. , 2001, International journal of food microbiology.

[51]  M. Bennik,et al.  The combined action of carvacrol and high hydrostatic pressure on Listeria monocytogenes Scott A , 2001, Journal of applied microbiology.

[52]  F. M. Silva,et al.  Alicyclobacillus acidoterrestris spores in fruit products and design of pasteurization processes , 2001 .

[53]  L. Beuchat,et al.  Human pathogens associated with raw produce and unpasteurized juices, and difficulties in decontamination , 2000, Journal of Industrial Microbiology and Biotechnology.

[54]  M. Nauta,et al.  Research on factors allowing a risk assessment of spore-forming pathogenic bacteria in cooked chilled foods containing vegetables: a FAIR collaborative project. , 2000, International journal of food microbiology.

[55]  C. Stewart,et al.  Sensitivity of spores of Bacillus subtilis and Clostridium sporogenes PA 3679 to combinations of high hydrostatic pressure and other processing parameters , 2000 .

[56]  R. P. Ross,et al.  Combination of hydrostatic pressure and lacticin 3147 causes increased killing of Staphylococcus and Listeria , 2000, Journal of applied microbiology.

[57]  Cristina L. M. Silva,et al.  Mathematical modeling of the thermal degradation kinetics of vitamin C in cupuaçu (Theobroma grandiflorum) nectar , 2000 .

[58]  B. Masschalck,et al.  Inactivation of Escherichia coli in milk by high-hydrostatic-pressure treatment in combination with antimicrobial peptides. , 1999, Journal of food protection.

[59]  B. Guamis,et al.  Combined effect of nisin and high hydrostatic pressure on destruction of Listeria innocua and Escherichia coli in liquid whole egg. , 1998, International journal of food microbiology.

[60]  K. Yamasato,et al.  Propionibacterium cyclohexanicum sp. nov., a new acid-tolerant omega-cyclohexyl fatty acid-containing propionibacterium isolated from spoiled orange juice. , 1997, International journal of systematic bacteriology.

[61]  F. Busta,et al.  Inhibition of germination and vegetative growth ofBacillus cereusT andClostridium botulinum62A spores by essential oils , 1997 .

[62]  K Yamazaki,et al.  Isolation and identification of Alicyclobacillus acidoterrestris from acidic beverages. , 1996, Bioscience, biotechnology, and biochemistry.

[63]  J. Tagg,et al.  Copyright � 1995, American Society for Microbiology Bacteriocins of Gram-Positive Bacteria , 1995 .

[64]  Bibek Ray,et al.  Hydrostatic Pressure and Electroporation Have Increased Bactericidal Efficiency in Combination with Bacteriocins , 1994, Applied and environmental microbiology.

[65]  R. Wenzel,et al.  In vitro activity of mersacidin (M87-1551), an investigational peptide antibiotic tested against gram-positive bloodstream isolates. , 1992, Diagnostic microbiology and infectious disease.