Taylor's formula involving generalized fractional derivatives

Abstract In this paper, we establish a generalized Taylor expansion of a given function f in the form f ( x ) = ∑ j = 0 m c j α , ρ ( x ρ − a ρ ) j α + e m ( x ) with m ∈ N 0 , c j α , ρ ∈ R , x > a > 0 and 0  ρ = α = 1 , this expression coincides with the classical Taylor formula. The coefficients c j α , ρ , j = 0 , … , m as well as the residual term em(x) are given in terms of the generalized Caputo-type fractional derivatives. Several examples and applications of these results for the approximation of functions and for solving some fractional differential equations in series form are given in illustration.

[1]  Dumitru Baleanu,et al.  On the generalized fractional derivatives and their Caputo modification , 2017 .

[2]  Margarita Rivero,et al.  On a Riemann–Liouville Generalized Taylor's Formula , 1999 .

[3]  O. Bég,et al.  Physics of fractional imaging in biomedicine. , 2018, Progress in biophysics and molecular biology.

[4]  J. A. Tenreiro Machado,et al.  Fractional Calculus: Fundamentals and Applications , 2018 .

[5]  Shengda Zeng,et al.  Maximum Principles for Multi-Term Space-Time Variable-Order Fractional Diffusion Equations and their Applications , 2016 .

[6]  R. Herrmann Fractional Calculus: An Introduction for Physicists , 2011 .

[7]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[8]  V. E. Tarasov Fractional Dynamics of Open Quantum Systems , 2010 .

[9]  Muntz Type Theorems I , 2007, 0710.3570.

[10]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[11]  Zaid M. Odibat,et al.  Generalized Taylor's formula , 2007, Appl. Math. Comput..

[12]  Matti Vuorinen,et al.  The Cantor function , 2006 .

[13]  J. T. Tenreiro Machado And I say to myself: “What a fractional world!” , 2011 .

[14]  Tamás Erdélyi,et al.  Müntz systems and orthogonal Müntz-Legendre polynomials , 1994 .

[15]  Dumitru Baleanu,et al.  Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations , 2017 .

[16]  K. A. Lazopoulos,et al.  Fractional vector calculus and fluid mechanics , 2017 .

[17]  D. Anderson,et al.  Properties of the Katugampola fractional derivative with potential application in quantum mechanics , 2015 .

[18]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[19]  Anita Alaria,et al.  Applications of Fractional Calculus , 2018 .

[20]  Juan J. Trujillo,et al.  Caputo-Type Modification of the Erdélyi-Kober Fractional Derivative , 2007 .

[21]  Y. Chen,et al.  Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications , 2011 .

[22]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[23]  Yusuf Pandir,et al.  New exact solutions of the space-time fractional cubic Schrodinger equation using the new type F-expansion method , 2019 .

[24]  Udita N. Katugampola A NEW APPROACH TO GENERALIZED FRACTIONAL DERIVATIVES , 2011, 1106.0965.

[25]  N. Shimizu,et al.  Fractional Derivative Constitutive Models for Finite Deformation of Viscoelastic Materials , 2015 .

[26]  Yangquan Chen,et al.  Computers and Mathematics with Applications Stability of Fractional-order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag–leffler Stability , 2022 .

[27]  Udita N. Katugampola New approach to a generalized fractional integral , 2010, Appl. Math. Comput..

[28]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[29]  Shengda Zeng,et al.  A Class of time-fractional hemivariational inequalities with application to frictional contact problem , 2018, Commun. Nonlinear Sci. Numer. Simul..

[30]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[31]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[32]  Jacky Cresson,et al.  About Non-differentiable Functions , 2001 .

[33]  W. Schneider,et al.  Fractional diffusion and wave equations , 1989 .

[34]  N. Laskin Time fractional quantum mechanics , 2017, 1703.00301.

[35]  YangQuan Chen,et al.  Fractional-order systems and control : fundamentals and applications , 2010 .

[36]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[37]  Dumitru Baleanu,et al.  On Caputo modification of the Hadamard fractional derivatives , 2014, Advances in Difference Equations.

[38]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[39]  I. Podlubny Fractional differential equations , 1998 .

[40]  Richard L. Magin,et al.  On the fractional signals and systems , 2011, Signal Process..