Exploiting combinatorial relaxations to solve a routing & scheduling problem in car body manufacturing

Motivated by the laser sharing problem (LSP) in car body manufacturing, we define the new general routing and scheduling problem (RSP). In the RSP, multiple servers have to visit and process jobs; renewable resources are shared among them. The goal is to find a makespan-minimal scheduled dispatch. We present complexity results as well as a branch-and-bound algorithm for the RSP. This is the first algorithm that is able to solve the LSP for industrially relevant problem scales.

[1]  David K. Smith,et al.  Dynamic Programming and Optimal Control. Volume 1 , 1996 .

[2]  George L. Nemhauser,et al.  One-machine generalized precedence constrained scheduling problems , 1994, Oper. Res. Lett..

[3]  Matteo Fischetti,et al.  Exact Methods for the Asymmetric Traveling Salesman Problem , 2007 .

[4]  Jörg Rambau,et al.  How to avoid collisions in scheduling industrial robots , 2010 .

[5]  Martin Grötschel,et al.  Ein gemischt-ganzzahliges lineares Optimierungsmodell für ein Laserschweißproblem , 2006 .

[6]  Martin Skutella,et al.  Route Planning for Robot Systems , 2010, OR.

[7]  Rolf H. Möhring,et al.  Resource-constrained project scheduling: Notation, classification, models, and methods , 1999, Eur. J. Oper. Res..

[8]  Ángel Corberán,et al.  New heuristic algorithms for the windy rural postman problem , 2005, Comput. Oper. Res..

[9]  Sven Oliver Krumke,et al.  Real-Time Dispatching of Guided and Unguided Automobile Service Units with Soft Time Windows , 2002, ESA.

[10]  Francis Sourd,et al.  Scheduling chains on a single machine with non-negative time lags , 2003, Math. Methods Oper. Res..

[11]  Marius M. Solomon,et al.  Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints , 1987, Oper. Res..

[12]  Daniele Vigo,et al.  Lower bounds and heuristics for the Windy Rural Postman Problem , 2007, Eur. J. Oper. Res..

[13]  William J. Cook,et al.  The Traveling Salesman Problem: A Computational Study , 2007 .

[14]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[15]  Peter Brucker,et al.  Complex Scheduling , 2006 .

[16]  Jacques Desrosiers,et al.  Chapter 2 Time constrained routing and scheduling , 1995 .

[17]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .

[18]  Jörg Rambau,et al.  On the benefits of using NP-hard problems in Branch & Bound , 2009 .

[19]  Wi Kum,et al.  One-machine generalized precedence constrained scheduling , 1992 .

[20]  Stefan Irnich,et al.  Vehicle Routing Problems with Inter-Tour Resource Constraints , 2008 .

[21]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .