A framework for evaluating ontology meta-matching approaches

Ontology matching has become a key issue to solve problems of semantic heterogeneity. Several researchers propose diverse techniques that can be used in distinct scenarios. Ontology meta-matching approaches are a specialization of ontology matching and have achieved good results in pairs of ontologies with different types of heterogeneities. However, developing a new ontology meta-matcher can be a costly process and a lot of experiments are often carried out to analyze the behavior of the matcher. This article presents a modularized framework that covers the main stages of the ontology meta-matching evaluation process. This framework aims to aid researchers to develop and analyze algorithms for ontology meta-matching, mainly metaheuristic-based supervised and unsupervised approaches. As the main contribution of the research, the framework proposed will facilitate the evaluation of ontology meta-matching approaches and, as the secondary contribution, a data provenance model that captures the main information generated and consumed throughout experiments is presented in the framework.

[1]  Giovanni Acampora,et al.  Enhancing ontology alignment through a memetic aggregation of similarity measures , 2013, Inf. Sci..

[2]  Christiane Fellbaum,et al.  Combining Local Context and Wordnet Similarity for Word Sense Identification , 1998 .

[3]  Heiko Paulheim,et al.  MELT - Matching EvaLuation Toolkit , 2019, SEMANTiCS.

[4]  Brian McBride,et al.  Jena: A Semantic Web Toolkit , 2002, IEEE Internet Comput..

[5]  Ismael Navas-Delgado,et al.  MaF: An Ontology Matching Framework , 2012 .

[6]  Rachid El Ayachi,et al.  Optimizing Ontology Alignments by Using Neural NSGA-II , 2018, J. Electron. Commer. Organ..

[7]  Junfeng Chen,et al.  Using Compact Evolutionary Tabu Search algorithm for matching sensor ontologies , 2019, Swarm Evol. Comput..

[8]  Xingsi Xue,et al.  Using Memetic Algorithm for Instance Coreference Resolution , 2016, IEEE Trans. Knowl. Data Eng..

[9]  Ollivier Haemmerlé,et al.  Survey on complex ontology matching , 2020, Semantic Web.

[10]  Philip Resnik,et al.  Using Information Content to Evaluate Semantic Similarity in a Taxonomy , 1995, IJCAI.

[11]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[12]  Shiyong Lu,et al.  Prospective and Retrospective Provenance Collection in Scientific Workflow Environments , 2010, 2010 IEEE International Conference on Services Computing.

[13]  Erhard Rahm,et al.  Similarity flooding: a versatile graph matching algorithm and its application to schema matching , 2002, Proceedings 18th International Conference on Data Engineering.

[14]  Junfeng Chen,et al.  A Hybrid NSGA-II for Matching Biomedical Ontology , 2018, IIH-MSP 2018.

[15]  Gerard de Melo,et al.  Complex Schema Mapping and Linking Data: Beyond Binary Predicates , 2016, LDOW@WWW.

[16]  Junfeng Chen,et al.  Using NSGA-III for optimising biomedical ontology alignment , 2019, CAAI Trans. Intell. Technol..

[17]  Jairo Francisco de Souza,et al.  A framework to aggregate multiple ontology matchers , 2020, Int. J. Web Inf. Syst..

[18]  Peter Ochieng,et al.  Large-Scale Ontology Matching , 2018, ACM Comput. Surv..

[19]  Uzay Kaymak,et al.  Applying NSGA-II for Solving the Ontology Alignment Problem , 2013, 2013 IEEE International Conference on Systems, Man, and Cybernetics.

[20]  Xingsi Xue,et al.  Using MOEA/D for optimizing ontology alignments , 2013, Soft Computing.

[21]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[22]  J. Euzenat,et al.  Ontology Matching , 2007, Springer Berlin Heidelberg.

[23]  Junfeng Chen,et al.  Optimizing ontology alignment through hybrid population-based incremental learning algorithm , 2018, Memetic Computing.

[24]  Riccardo Poli,et al.  A Field Guide to Genetic Programming , 2008 .

[25]  Xingsi Xue,et al.  Collaborative ontology matching based on compact interactive evolutionary algorithm , 2017, Knowl. Based Syst..

[26]  Lorena Otero-Cerdeira,et al.  Ontology matching: A literature review , 2015, Expert Syst. Appl..

[27]  Cláudio T. Silva,et al.  Provenance for Computational Tasks: A Survey , 2008, Computing in Science & Engineering.

[28]  Martha Palmer,et al.  Verb Semantics and Lexical Selection , 1994, ACL.

[29]  Alexandra Semenova,et al.  Combined Method for Integration of Heterogeneous Ontology Models for Big Data Processing and Analysis , 2017, CSOC.

[30]  Fred J. Damerau,et al.  A technique for computer detection and correction of spelling errors , 1964, CACM.

[31]  Theodora A. Varvarigou,et al.  An Intelligent Ontology Alignment Tool Dealing with Complicated Mismatches , 2014, SWAT4LS.

[32]  Jeng-Shyang Pan,et al.  A segment-based approach for large-scale ontology matching , 2017, Knowledge and Information Systems.

[33]  A.V. Semenova,et al.  Multi-objective particle swarm optimization for ontology alignment , 2016, 2016 IEEE 10th International Conference on Application of Information and Communication Technologies (AICT).

[34]  Jeng-Shyang Pan,et al.  A Compact Co-Evolutionary Algorithm for sensor ontology meta-matching , 2017, Knowledge and Information Systems.

[35]  José Francisco Aldana Montes,et al.  MaF: An Ontology Matching Framework , 2012, J. Univers. Comput. Sci..

[36]  Majid Mohammadi,et al.  Simulated Annealing-based Ontology Matching , 2019, ACM Trans. Manag. Inf. Syst..

[37]  Ujjal Marjit,et al.  Aggregated Similarity Optimization in Ontology Alignment through Multiobjective Particle Swarm Optimization , 2015 .

[38]  Shi-Jian Liu,et al.  Compact Evolutionary Algorithm Based Ontology Meta-matching , 2017 .

[39]  Graeme Hirst,et al.  Semantic distance in WordNet: An experimental, application-oriented evaluation of five measures , 2004 .

[40]  Heiko Paulheim,et al.  Evaluating Ontology Matchers on Real-World Financial Services Data Models , 2019, SEMANTICS Posters&Demos.

[41]  Xingsi Xue,et al.  Geo-spatial Ontology Matching Through Compact Evolutionary Algorithm , 2018 .

[42]  Emanuel Santos,et al.  The AgreementMakerLight Ontology Matching System , 2013, OTM Conferences.

[43]  Ted Pedersen,et al.  Extended Gloss Overlaps as a Measure of Semantic Relatedness , 2003, IJCAI.

[44]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[45]  Xingsi Xue,et al.  Optimizing ontology alignments through a Memetic Algorithm using both MatchFmeasure and Unanimous Improvement Ratio , 2015, Artif. Intell..

[46]  Xingsi Xue,et al.  An Evolutionary Algorithm based Ontology Matching System , 2017, J. Inf. Hiding Multim. Signal Process..

[47]  Junfeng Chen,et al.  A Preference-Based Multi-Objective Evolutionary Algorithm for Semiautomatic Sensor Ontology Matching , 2018, Int. J. Swarm Intell. Res..

[48]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[49]  Jérôme Euzenat,et al.  Ontology Matching: State of the Art and Future Challenges , 2013, IEEE Transactions on Knowledge and Data Engineering.