Weighted skeletons and fixed-share decomposition

We introduce the concept of weighted skeleton of a polygon and present various decomposition and optimality results for this skeletal structure when the underlying polygon is convex.

[1]  Jack Snoeyink,et al.  On the time bound for convex decomposition of simple polygons , 1998, CCCG.

[2]  Franz Aurenhammer,et al.  Quickest Paths, Straight Skeletons, and the City Voronoi Diagram , 2002, SCG '02.

[3]  Franz Aurenhammer,et al.  Minkowski-Type Theorems and Least-Squares Clustering , 1998, Algorithmica.

[4]  J. Sack,et al.  Handbook of computational geometry , 2000 .

[5]  Javier Tejel,et al.  Dividiendo una nube de puntos en regiones convexas , 1995 .

[6]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  David G. Kirkpatrick,et al.  Efficient computation of continuous skeletons , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[9]  J. Mark Keil,et al.  Polygon Decomposition , 2000, Handbook of Computational Geometry.

[10]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[11]  Franz Aurenhammer,et al.  Recognising Polytopical Cell Complexes and Constructing Projection Polyhedra , 1987, J. Symb. Comput..

[12]  Takeshi Tokuyama,et al.  Splitting a configuration in a simplex , 2005, Algorithmica.

[13]  L. Chew Building Voronoi Diagrams for Convex Polygons in Linear Expected Time , 1990 .

[14]  Nancy M. Amato,et al.  Approximate convex decomposition of polygons , 2006, Comput. Geom..

[15]  Leonidas J. Guibas,et al.  A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1989, Discret. Comput. Geom..

[16]  Nancy M. Amato,et al.  Approximate convex decomposition of polygons , 2004, SCG '04.

[17]  Bernard Chazelle,et al.  Decomposing a polygon into its convex parts , 1979, STOC.

[18]  Walter Whiteley,et al.  Plane Self Stresses and projected Polyhedra I: The Basic Pattem , 1993 .

[19]  Hans Jürgen Prömel,et al.  The Steiner Tree Problem , 2002 .

[20]  Franz Aurenhammer,et al.  A Novel Type of Skeleton for Polygons , 1996 .